Advertisement

Line-Scanning Microscopy for Time-Gated and Spectrally Resolved Fluorescence Imaging

  • Ryosuke Nakamura
  • Yoshihiro Izumi
  • Shin’ichiro Kajiyama
  • Akio Kobayashi
  • Yasuo Kanematsu
Original Paper

Abstract

Laser-scanning fluorescence microscopy for efficient acquisition of time-gated and spectrally resolved fluorescence images was developed based on line illumination of the laser beam and detection of the fluorescence image through a slit. In this optical arrangement, the fluorescence image was obtained by scanning only one axis perpendicular to the excitation line, and the acquisition time was significantly reduced compared with conventional laser-scanning confocal microscopy. A multidimensional fluorescence dataset consisting of fluorescence intensities as a function of x-position, y-position, fluorescence wavelength, and delay time after photoexcitation was analyzed and decomposed based on the parallel factor analysis model. The performance of the line-scanning microscopy was examined by applying it to the analysis of one of the plant defense responses, accumulation of antimicrobial compounds of phytoalexin in oat (Avena sativa), induced by the elicitor treatment.

Keywords

Fluorescence microscopy Autofluorescence PARAFAC Phytoalexin 

Notes

Acknowledgements

We thank Dr. A. Ishihara (Kyoto University, Kyoto) for helpful discussion and for providing avenanthramides. This work was supported by a grant from CREST of the Japan Science and Technology Agency and by the Grant-in-Aid for Scientific Research in Priority Area (432) “Molecular Nano Dynamics” from the Ministry of Education, Culture, Sports, Science, and Technology (No. 17034033).

References

  1. 1.
    Evanko, D. (ed.): Focus on fluorescence imaging—principles and practice of microscope techniques. Nat. Methods 2, 901–950 (2005)CrossRefGoogle Scholar
  2. 2.
    Invitrogen: The handbook—a guide to fluorescent probes and labeling technologies. Available via DIALOG. http://probes.invitrogen.com/handbook/ (2008)
  3. 3.
    Chudakov, D.M., Lukyanov, S., Lukyanov, K.A.: Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005)CrossRefGoogle Scholar
  4. 4.
    Richards-Kortum, R., Sevick-Muraca, E.: Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606 (1996)CrossRefGoogle Scholar
  5. 5.
    Andersson-Engels, S., af Klinteberg, C., Svanberg, K., Svanberg, S.: In vivo fluorescence imaging for tissue diagnostics. Phys. Med. Biol. 42, 815–824 (1997)CrossRefGoogle Scholar
  6. 6.
    Bennett, M., Gallagher, M., Fagg, J., Beswick, C., Paul, T., Beale, M., Mansfield, J.: The hypersensitive reaction, membrane damage and accumulation of autofluorescence phenolics in lettuce cells challenged by Bremia lactucae. Plant J. 9, 851–865 (1996)CrossRefGoogle Scholar
  7. 7.
    Andersson, H., Baechi, T., Hoechl, M., Richter, C.: Autofluorescence of living cells. J. Microsc. 191, 1–7 (1998)CrossRefGoogle Scholar
  8. 8.
    Betz, C.S., Mehlmann, M., Rick, K., Stepp, H., Grevers, G., Baumgartner, R., Leunig, A.: Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg. Med. 25, 323–334 (1999)CrossRefGoogle Scholar
  9. 9.
    Inaguma, M., Hashimoto, K.: Porphyrin-like fluorescence in oral cancer. Cancer 86, 2201–2211 (1999)CrossRefGoogle Scholar
  10. 10.
    Rigacci, L., Alterini, R., Bernabei, P.A., Ferrini, P.R., Agati, G., Fusi, F., Monici, M.: Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues. Photochem. Photobiol. 71, 737–742 (2000)CrossRefGoogle Scholar
  11. 11.
    Huang, S., Heikal, A.A., Webb, W.W.: Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002)CrossRefGoogle Scholar
  12. 12.
    Ashjian, P., Elbarbary, A., Zuk, P., DeUgrate, D.A., Benhaim, P., Marcu, L., Hedrick, M.H.: Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy. Tissue Eng. 10, 411–420 (2004)CrossRefGoogle Scholar
  13. 13.
    Zangaro, R.A., Silveira, L., Manoharan, R., Zonios, G., Itzkan, I., Dasari, R.R., Van Dam, J., Feld, M.S.: Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis. Appl. Opt. 35, 5211–5219 (1996)CrossRefADSGoogle Scholar
  14. 14.
    Zuluaga, A.F., Utzinger, U., Durkin, A., Fuchs, H., Gillenwater, A., Jacob, R., Kemp, B., Fan, J., Richards-Kortum, R.: Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and method of data analysis. Appl. Spectrosc. 53, 302–311 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Coghlan, L., Utzinger, U., Drezek, R., Heintzelman, D., Zuluaga, A., Brookner, C., Richards-Kortum, R., Gimenez-Conti, I., Follen, M.: Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model. Opt. Express 7, 436–446 (2000)ADSGoogle Scholar
  16. 16.
    Zellweger, M., Grosjean, P., Goujon, D., Monnier, P., van den Bergh, H., Wagnieres, G.: In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers. J. Biomed. Opt. 6, 41–51 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Brancaleon, L., Durkin, A.J., Tu, J.H., Menaker, G., Fallon, J.D., Kollias, N.: In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73, 178–183 (2001)CrossRefGoogle Scholar
  18. 18.
    Shirakawa, H., Miyazaki, S.: Blind spectral decomposition of single-cell fluorescence by parallel factor analysis. Biophys. J. 86, 1739–1752 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Malik, Z., Cabib, D., Buckwald, R.A., Talmi, A., Garini, Y., Lipson, S.G.: Fourier transform multipixel spectroscopy for quantitative cytology. J. Microsc. 182, 133–140 (1996)CrossRefGoogle Scholar
  20. 20.
    Hanley, Q.S., Arndt-Jovin, D.J., Jovin, T.M.: Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Siegel, J., Elson, D.S., Webb, S.E.D., Parsons-Karavassilis, D., Leveque-Font, S., Cole, M.J., Lever, M.J., French, P.M.W., Neil, M.A.A., Juskaitis, R., Sucharov, L.O., Wilson, T.: Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning. Opt. Lett. 26, 1338–1340 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Haralampus-Grynaviski, N.M., Stimson, M.J., Simon, J.D.: Design and application of rapid-scan spectrally resolved fluorescence microscopy. Appl. Spectrosc. 54, 1727–1733 (2000)CrossRefADSGoogle Scholar
  23. 23.
    Veirs, D.K., Ager, J.W., Loucks, E.T., Rosenblatt, G.M.: Mapping materials properties with Raman spectroscopy utilizing a 2-D detector. Appl. Opt. 29, 4969–4980 (1990)CrossRefADSGoogle Scholar
  24. 24.
    Brakenhoff, G.J., Visscher, K.: Confocal imaging with bilateral scanning and array detectors. J. Microsc. 165, 139–146 (1991)Google Scholar
  25. 25.
    Brakenhoff, G.J., Squier, J., Norris, T., Bliton, A.C., Wade, M.H., Athey, B.: Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc. 181, 253–259 (1996)CrossRefGoogle Scholar
  26. 26.
    Stimson, M.J., Haralampus-Grynaviski, N., Simon, J.D.: A unique optical arrangement for obtaining spectrally resolved confocal images. Rev. Sci. Instrum. 70, 3351–3354 (1999)CrossRefADSGoogle Scholar
  27. 27.
    Harshman, R.A., Lundy, M.E.: PARAFAC: parallel factor analysis. Comput. Stat. Data Anal. 18, 39–72 (1994)zbMATHCrossRefGoogle Scholar
  28. 28.
    Bro, R.: PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997)CrossRefGoogle Scholar
  29. 29.
    Bro, R.: Review on multiway analysis in chemistry—2000–2005. Crit. Rev. Anal. Chem. 36, 279–293 (2006)CrossRefGoogle Scholar
  30. 30.
    Anderson, C.M., Bro, R.: Practical aspects of PARAFAC modeling of fluorescence excitation–emission data. J. Chemom. 17, 200–215 (2003)CrossRefGoogle Scholar
  31. 31.
    Mayama, S., Tani, T., Matsuura, Y., Ueno, T., Fukami, H.: The production of phytoalexins by oat in response to crown rust, Puccinia-coronata f. sp. avenae. Physiol. Plant Pathol. 19, 217 (1981)Google Scholar
  32. 32.
    Mayama, S., Matsuura, Y., Iida, H., Tani, T.: The role of avenalumin in the resistance of oat to crown rust, Puccinia-coronata f. sp. avenae. Physiol. Plant Pathol. 20, 189–199 (1982)CrossRefGoogle Scholar
  33. 33.
    Collins, F.W.: Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J. Agric. Food Chem. 37, 60–66 (1989)CrossRefGoogle Scholar
  34. 34.
    Bordin, A.P.A., Mayama, S., Tani, T.: Potential elicitors for avenalumin accumulation in oat leaves. Ann. Phytopathol. Soc. Jpn. 57, 688–695 (1991)Google Scholar
  35. 35.
    Miyagawa, H., Ishihara, A., Nishimoto, T., Ueno, T., Mayama, S.: Induction of avenanthramides in oat leaves inoculated with crown rust fungus, Puccinia-coronata f. sp. avenae. Biosci. Biotechnol. Biochem. 59, 2305–2306 (1995)Google Scholar
  36. 36.
    Miyagawa, H., Ishihara, A., Kuwahara, Y., Ueno, T., Mayama, S.: Comparative studies of elicitors that induce phytoalexin in oats. J. Pestic. Sci. 21, 203–207 (1996)Google Scholar
  37. 37.
    Andersson, C.A., Bro, R.: The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 52, 1–4 (2000)CrossRefGoogle Scholar
  38. 38.
    Ishihara, A., Miyagawa, H., Matsukawa, T., Ueno, T., Mayama, S., Iwamura, H.: Induction of hydroxyanthranilate hydroxycinnamoyl transferase activity by oligo-N-acetylchitooligosaccharides in oats. Phytochemistry 47, 969–974 (1998)CrossRefGoogle Scholar
  39. 39.
    Ishihara, A., Ohtsu, Y., Iwamura, H.: Induction of biosynthetic enzymes for avenanthramides in elicitor-treated oat leaves. Planta 208, 512–518 (1999)CrossRefGoogle Scholar
  40. 40.
    Oster, G., Nishijima, Y.: Fluorescence and internal rotation: their dependence on viscosity of the medium. J. Am. Chem. Soc. 78, 1581–1584 (1956)CrossRefGoogle Scholar
  41. 41.
    Sharafy, S., Muszkat, K.A.: Viscosity dependence of fluorescence quantum yields. J. Am. Chem. Soc. 93, 4119–4125 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Ryosuke Nakamura
    • 1
  • Yoshihiro Izumi
    • 2
  • Shin’ichiro Kajiyama
    • 2
  • Akio Kobayashi
    • 2
  • Yasuo Kanematsu
    • 1
  1. 1.JST-CREST, Venture Business Laboratory, Center for Advanced Science and InnovationOsaka UniversityOsakaJapan
  2. 2.Division of Advanced Science and Biotechnology, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations