Skip to main content
Log in

A Model Coupling Vibrational and Rotational Motion for the DNA Molecule

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We investigate a mechanical model for the DNA molecule using an extension of the Peyrard and Bishop model. In the present model, there are two chains of oscillators linked by a Morse potential, which represent the hydrogen bonds. The rotational and vibrational motions of each base pair are considered and the coupling for these motions are introduced by a nonlinear combination of them in the Morse potential. In this context, thermodynamics and structural properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids. Nature 171, 737–738 (1953)

    Article  ADS  Google Scholar 

  2. Danilov, V.I., Kudritskaya, Z.G.: Quantum mechanical study of bases interactions in various associates in atomic dipole approximation. J. Theor. Biol. 59, 303–318 (1976)

    Article  Google Scholar 

  3. Grinza, P., Mossa, A.: Topological origin of the phase transition in a model of DNA denaturation. Phys. Rev. Lett. 92(15), 158102(1–3) (2004)

    Article  ADS  Google Scholar 

  4. Yakushevich, L.V.: Nonlinear DNA dynamics: a new model. Phys. Lett. A 136(7), 413–417 (1989)

    Article  ADS  Google Scholar 

  5. Peyrard, M., Bishop, A.R.: Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62(23), 2755–2758 (1989)

    Article  ADS  Google Scholar 

  6. Poland, D., Scheraga, H.A.: Theory of Helix-Coil Transitions in Biopolymers. Academic Press, New York (1970)

    Google Scholar 

  7. Wartell, R. M, Benight, A.S.: Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys. Rep. 126, 67–107 (1985)

    Article  ADS  Google Scholar 

  8. Fedyanin, V.K., Yakushevich, L.V.: Scattering of neutrons and light by DNA solitons. Stud. Biophys. 103, 171–178 (1984)

    Google Scholar 

  9. Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A., Litwin, S.: Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. U. S. A. 77, 7222–7226 (1980)

    Article  ADS  Google Scholar 

  10. Ambjörnsson, T., Banik, S.K., Krichevsky, O., Metzler, R.: Sequence sensitivity of breathing dynamics in heteropolymer DNA. Phys. Rev. Lett. 97, 128105 (2006)

    Article  ADS  Google Scholar 

  11. Ambjörnsson, T., Banik, S.K., Krichevsky, O., Metzler, R.: Breathing dynamics in heteropolymer DNA. Biophys. J. 92, 2674 (2007)

    Article  ADS  Google Scholar 

  12. Altan-Bonnet, G., Libchaber, A., Krichevsky, O.: Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003)

    Article  ADS  Google Scholar 

  13. Vladescu, I.D., McCauley, M.J., Rouzina, I., Williams, M.C.: Mapping the phase diagram of single DNA molecule force-induced melting in the presence of ethidium. Phys. Rev. Lett. 95, 158102 (2005)

    Article  ADS  Google Scholar 

  14. Gao, Y., Prohofsky, E.W.: A modified self-consistent phonon theory of hydrogen bond melting. J. Chem. Phys. 80, 2242 (1984)

    Article  ADS  Google Scholar 

  15. Gao, Y., Devi-Prosad, K.V., Prohofsky, E.W.: A self-consistent microscopic theory of hydrogen bond melting with application to poly (dG)-poly(dC). J. Chem. Phys. 80, 6291–6298 (1984)

    Article  ADS  Google Scholar 

  16. Zdravković, S., Satarić, M.V.: Single-molecule unzippering experiments on DNA and Peyrard–Bishop–Dauxois model. Phys. Rev. E 73, 021905(1–11) (2006)

    Article  ADS  Google Scholar 

  17. Drigo Filho, E., Ruggiero, J.R.: Parameters describing the H bond in DNA. Phys. Rev. A 44(12), 43–44 (1991)

    Article  Google Scholar 

  18. Zdravkovic, S., Satarić, M., Tuszyński, J.: Biophysical implications of the Peyrard–Bishop–Dauxois model of DNA dynamics. J. Theor. Comput. Nanosci. 1, 171–181 (2004)

    Google Scholar 

  19. Scalapino, D.J., Sears, M., Ferrell, R.A.: Statistical mechanics of one-dimensional Ginzburg–Landau fields. Phys. Rev. B 6, 3409–3416 (1972)

    Article  ADS  Google Scholar 

  20. De Luca, J., Drigo Filho, E., Ponno, A., Ruggiero, J.R.: Energy localization in the Peyrard–Bishop DNA model. Phys. Rev. E 70, 026213(1–9) (2004)

    Article  ADS  Google Scholar 

  21. Peyrard, M.: Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17, r1–r40 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FAPESP, CNPq, FUNDUNESP, and CAPES (Brazilian agencies). EDF wishes to thank the Isaac Newton Institute for Mathematical Sciences, University of Cambridge, for support during the program on Combinatorics and Statistical Mechanics (January–June 2008), where this work was discussed and completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Drigo Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.A.S., Filho, E.D. & Ruggiero, J.R. A Model Coupling Vibrational and Rotational Motion for the DNA Molecule. J Biol Phys 34, 511–519 (2008). https://doi.org/10.1007/s10867-008-9111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9111-2

Keywords