Skip to main content
Log in

Spatial Interaction Among Nontoxic Phytoplankton, Toxic Phytoplankton, and Zooplankton: Emergence in Space and Time

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity—a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hutchinson, G.E.: The paradox of the plankton. Am. Nat. 95, 137–145 (1961)

    Article  Google Scholar 

  2. Richerson, P.J., Armstrong, R., Goldman, C.R.: Contemporaneous disequilibrium: a new hypothesis to explain the paradox of plankton. Proc. Natl. Acad. Sci. U. S. A. 67, 1710–1714 (1970)

    Article  ADS  Google Scholar 

  3. Huisman, J., Weissing, F.J.: Biodiversity of plankton by species oscillation and chaos. Nature 402, 407–410 (1999)

    Article  ADS  Google Scholar 

  4. Huisman, J., Pham Thi, N.N., Karl, D.M., Sommeijer, B.: Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439, 322–325 (2006)

    Article  ADS  Google Scholar 

  5. Scheffer, M., Rinaldi, S., Huisman, J., Weissing, F.J.: Why phytoplankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491, 9–18 (2003)

    Article  Google Scholar 

  6. Roy, S., Chattopadhyay, J.: Towards a resolution of the paradox of the plankton: a brief overview of the existing mechanisms. Ecol. Complex. 4(1–2), 26–33 (2007)

    Article  Google Scholar 

  7. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hallam, T., Clark, C., Jordan, G.: Effects of toxicants on populations: a qualitative approach. II. First order kinetics. J. Theor. Biol. 18, 25–37 (1983)

    MATH  Google Scholar 

  9. Arzul, G., Seguel, M., Guzman, L., Denn, E.E.-L.: Comparison of allelopathic properties in three toxic alexandrium species. J. Exp. Mar. Biol. Ecol. 232(C11), 285–295 (1999)

    Article  Google Scholar 

  10. Chan, A., Andersen, R., Blanc, M.L., Harrison, P.: Algal planting as a tool for investigating allelopathy among marine microalgae. Mar. Biol. 84, 287–291 (1980)

    Google Scholar 

  11. Nielsen, T.G., Kiørboe, T., Bjørnsen, P.K.: Effects of a Chrysochromulina polylepis subsurface bloom on the plankton community. Mar. Ecol. Prog. Ser. 62, 21–35 (1990)

    Article  Google Scholar 

  12. Schmidt, L., Hansen, P.: Allelopathy in the prymnesiophyte Chrysocromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216, 67–81 (2001)

    Article  Google Scholar 

  13. Fistarol, G., Legrand, C., Graneli, E.: Allelopathic effect of primnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255, 115–125 (2003)

    Article  Google Scholar 

  14. Fistarol, G., Legrand, C., Selander, E., Hummert, C., Stolte, W., Graneli, E.: Allelopathy in alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat. Microb. Ecol. 35, 45–56 (2004)

    Article  Google Scholar 

  15. Kozlowsky-Suzuki, B., et al.: Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytenora affinis in the presence of the toxic cynobacterium Nodularia Spumigena. Mar. Ecol. Prog. 249, 237–249 (2003)

    Article  Google Scholar 

  16. Chattopadhyay, J., Sarkar, R.R., Mandal, S.: Toxin-producing plankton may act as a biological control for planktonic blooms – field study and mathematical modeling. J. Theor. Biol. 215, 333–344 (2002)

    Article  Google Scholar 

  17. Roy, S., Alam, S., Chattopadhyay, J.: Competing effects of toxin-producing phytoplankton on the overall plankton populations in the Bay of Bengal. Bull. Math. Biol. 68(8), 2303–2320 (2006)

    Article  MathSciNet  Google Scholar 

  18. Roy, S., Chattopadhyay, J.: Toxin-allelopathy among phytoplankton species prevents competitive exclusion. J. Biol. Syst. 15(1), 73–93 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roy, S., Bhattacharya, S., Das, P., Chattopadhyay, J.: Interaction among nontoxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field observations. J. Biol. Phys. 33(1), 1–17 (2007)

    Article  Google Scholar 

  20. Cembella, A.D.: Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42(4), 420–447 (2003)

    Article  Google Scholar 

  21. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  22. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin (1980)

    MATH  Google Scholar 

  23. Solé, J., García-Ladona, E., Ruardij, P., Estrada, M.: Modelling allelopathy among marine algae. Ecol. Model. 183, 373–384 (2005)

    Article  Google Scholar 

  24. Petrovskii, S.V., Malchow, H.: Wave of chaos: new mechanism for pattern formation in spatiotemporal population dynamics. Theor. Popul. Biol. 59, 157–174 (2001)

    Article  MATH  Google Scholar 

  25. Petrovskii, S.V., Malchow, H.: A minimal model for pattern formation in a prey-predator system. Math. Comput. Model. 29, 49–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Odum, E.P.: Fundamentals of Ecology. Saunders, Philadelphia (1971)

    Google Scholar 

  27. Kirk, K., Gilbert, J.: Variation in herbivore response to chemical defence: zooplankton foraging on toxic cyanobacteria. Ecology 73, 2208 (1992)

    Article  Google Scholar 

  28. Buskley, E.J., Stockwell, A.J.: Effect of persistent brown tide on zooplankton population in the Laguna Madre of southern Texas. In: Smayda, T.J., Shimuzu, Y. (eds.) Toxic Phytoplankton Bloom in the Sea. Elsevier, Amsterdam, pp. 659–666 (1997)

    Google Scholar 

  29. Chattopadhyay, J., Sarkar, R.R., Elabdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161 (2002)

    Article  MATH  Google Scholar 

  30. Irigoien, X., Flynn, K.J., Harris, R.P.: Phytoplankton blooms: a loophole in microzooplankton grazing impact? J. Plankton Res. 27, 313–321 (2005). doi:10.1093/plankt/fbi011

    Article  Google Scholar 

  31. Mitra, A., Flynn, K.J.: Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2, 194–197 (2006). doi:10.1098/rsbl.2006.0447

    Article  Google Scholar 

  32. Pascual, M.: Diffusion induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. Ser. B 251, 1–7 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present research of S. Roy is supported by a Royal Society International Fellowship. The valuable comments of Professor K. J. Flynn, University of Swansea, on an early version of the paper are acknowledged. The author thanks the learned referees for their valuable comments that have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovonlal Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S. Spatial Interaction Among Nontoxic Phytoplankton, Toxic Phytoplankton, and Zooplankton: Emergence in Space and Time. J Biol Phys 34, 459–474 (2008). https://doi.org/10.1007/s10867-008-9100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9100-5

Keywords

Navigation