Skip to main content
Log in

Electron Correlated Ab Initio Study of Amino Group Flexibility for Improvement of Molecular Mechanics Simulations on Nucleic Acid Conformations and Interactions

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

High level ab initio studies demonstrate substantial conformational flexibility of amino groups of nucleic acid bases. This flexibility is important for biological functions of DNA. Existing force field models of molecular mechanics do not describe this phenomenon due to a lack of quantitative experimental data necessary for an adjustment of empirical parameters. We have performed extensive calculations of nucleic acid bases at the MP2/6-31G(d,p) level of ab initio theory for broad set of amino group configurations. Two-dimensional maps of energy and geometrical characteristics as functions of two amino hydrogen torsions have been constructed. We approximate the maps by polynomial expressions, which can be used in molecular mechanics calculations. Detailed considerations of these maps enable us to propose a method for determination of numerical coefficients in the developed formulae using restricted sets of points obtained via higher-level calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hays, F.A., Teegarden, A., Jones, Z.J.R., Harms, M., Raup, D., Watson, J., Cavaliere, E., Ho, P.S.: How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc. Natl. Acad. Sci. 102, 7157 (2005)

    Article  ADS  Google Scholar 

  2. Chou, S.-H., Chin, K.-H., Wang, A.H.-J.: Unusual DNA duplex and hairpin motifs. Nucleic Acids Res. 31, 2461 (2003)

    Article  Google Scholar 

  3. Pallan, P.S., Lubini, P., Bolli, M., Egli, M.: Backbone-base inclination as a fundamental determinant of nucleic acid self- and cross-pairing. Nucleic Acids Res. 35, 6611 (2007)

    Article  Google Scholar 

  4. Parvathy, V.R., Bhaumik, S.R., Chary, K.V.R., Govil, G., Liu, K., Howard, F.B., Miles, H.T.: NMR structure of a parallel-stranded DNA duplex at atomic resolution. Nucleic Acids Res. 30, 1500 (2002)

    Article  Google Scholar 

  5. Pfaff, D.A., Clarke, K.M., Parr, T.A., Cole, J.M., Geierstanger, B.H., Tahmassebi, D.C., Dwyer, T.J.: Solution structure of a DNA duplex containing a guanine-difluorotoluene pair: a wobble pair without hydrogen bonding? J. Am. Chem. Soc. 130, 4869 (2008)

    Article  Google Scholar 

  6. Matsugami, A., Ohyama, T., Inada, M., Inoue, N., Minakawa, N., Matsuda, A., Katahira, M.: Unexpected A-form formation of 4’-thioDNA in solution, revealed by NMR, and the implications as to the mechanism of nuclease resistance. Nucleic Acids Res. 36, 1805 (2008)

    Article  Google Scholar 

  7. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179 (1995)

    Article  Google Scholar 

  8. MacKerell, A.D. Jr., Bashford, D., Bellott, R.L., Dunbrack, R.L. Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  9. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E. III, DeBolt, S., Ferguson, D., Seibel, G., Kollman, P.: Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1 (1995)

    Article  MATH  ADS  Google Scholar 

  10. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM. A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187 (1983)

    Article  Google Scholar 

  11. Poltev, V.I., Shulyupina, N.V.: Simulation of interactions between nucleic acid bases by refined atomatom potential functions. J. Biomol. Struct. Dyn. 4, 739 (1986)

    Google Scholar 

  12. Poltev, V.I., Deriabina, A.S., Gonzalez, E., Grokhlina, T.I.: Interactions between nucleic acid bases: new parameters of potential functions and new energy minima. Biophysics 47, 972 (2002)

    Google Scholar 

  13. Scordamaglia, R., Cavallone, F., Clementi, E.: Analytical potentials from “ab initio” computations for the interaction between biomolecules. 2. Water with the four bases of DNA. J. Am. Chem. Soc. 99, 5545 (1977)

    Article  Google Scholar 

  14. Halgren, T.A.: Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J. Comput. Chem. 17, 490 (1996)

    Article  Google Scholar 

  15. Song, K., Hornak, V., De Los Santos, C., Grollman, A.P., Simmerling, C.: Molecular mechanics parameters for the FapydG DNA lesion. J. Comput. Chem. 29, 17 (2008)

    Article  Google Scholar 

  16. Oda, A., Yamaotsu, N., Hirono, S.: New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. J. Comput. Chem. 26, 818 (2005)

    Article  Google Scholar 

  17. Leszczynski, J.: Are the amino groups in the nucleic acid bases coplanar with the molecular rings? Ab initio HF/6-31G* and MP2/6-31G* studies. Int. J. Quantum Chem. Quantum Biol. Symp. 19, 43 (1992)

    Article  Google Scholar 

  18. Sponer, J., Florian, J., Leszczynski, J., Hobza, P.: Nonplanar DNA base pairs. J. Biomol. Struct. Dyn. 13, 827 (1996)

    Google Scholar 

  19. Hovorun, D.M., Gorb, L., Leszczynski, J.: From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-hartree—fock ab initio study of 2-aminoimidazole. Int. J. Quantum Chem. 75, 245 (1999)

    Article  Google Scholar 

  20. Sponer, J., Leszczynski, J., Hobza, P.: Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61, 3 (2002)

    Article  Google Scholar 

  21. Nelson, H.C.M., Finch, J.T., Luisi, B.F., Klug, A.: The structure of an oligo(dA) oligo(dT) tract and its biological implications. Nature 330, 221 (1987)

    Article  ADS  Google Scholar 

  22. Prive, G.G., Heinemann, U., Chandrasegaran, S., Kan, L.-S., Kopka, M.L., Dickerson, R.E.: Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science 38, 498 (1987)

    Article  ADS  Google Scholar 

  23. Ryjáček, F., Kubar, T., Hobza, P.: New Parameterization of the Cornell et al. empirical force field covering amino group nonplanarity in nucleic acid bases. J. Comput. Chem. 24, 1891 (2003)

    Article  Google Scholar 

  24. Poltev, V.I., Gonzalez, E., Deriabina, A.S., Lozano, L., Martinez, A., Robinson, T., Gorb, L., Leszczynski, J.: J. Mol. Struct. (Theochem) 729, 59 (2005)

    Article  Google Scholar 

  25. Wang, S., Schaefer, H.F. III: The small planarization barriers for the amino group in the nucleic acid bases. J. Chem. Phys. 124, 044303 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Poltev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poltev, V.I., Gonzalez, E., Deriabina, A. et al. Electron Correlated Ab Initio Study of Amino Group Flexibility for Improvement of Molecular Mechanics Simulations on Nucleic Acid Conformations and Interactions. J Biol Phys 33, 499–514 (2007). https://doi.org/10.1007/s10867-008-9091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9091-2

Keywords

Navigation