Skip to main content
Log in

Feedback Suppression of Neural Synchrony in Two Interacting Populations by Vanishing Stimulation

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We discuss the suppression of collective synchrony in a system of two interacting oscillatory networks. It is assumed that the first network can be affected by the stimulation, whereas the activity of the second one can be monitored. The study is motivated by ongoing attempts to develop efficient techniques for the manipulation of pathological brain rhythms. The suppression mechanism we consider is related to the classical problem of interaction of active and passive systems. The main idea is to connect a specially designed linear oscillator to the active system to be controlled. We demonstrate that the feedback loop, organized in this way, provides an efficient suppression. We support the discussion of our approach by a theoretical treatment of model equations for the collective modes of both networks, as well as by the numerical simulation of two coupled populations of neurons. The main advantage of our approach is that it provides a vanishing-stimulation control, i.e., the stimulation reduces to the noise level as soon as the goal is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. By active system, we mean a self-sustained oscillator capable of producing stable oscillations without external forces. On the contrary, a passive system oscillates only in response to external driving.

  2. The following conclusions hold also for identical oscillators in the presence of noise.

  3. Here, we mean brain activity that manifests itself as a rather narrow spectral peak in the power spectrum of EEG or MEG signals.

References

  1. Tass, P.A.: Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  2. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  ADS  Google Scholar 

  3. Milton, J., Jung, P. (eds.): Epilepsy as a Dynamic Disease. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., Vaadia, E.: Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 21, 32 (1998)

    Article  Google Scholar 

  5. Sarnthein, J., Morel, A., von Stein, A., Jeanmonod, D.: Thalamic theta field potentials and EEG: High thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders. Thalamus & Related Systems 2, 321 (2003)

    Google Scholar 

  6. Goldberg, J.A., Rokni, U., Boraud, T., Vaadia, E., Bergman, H.: Spike synchronization in the cortex-basal ganglia network of Parkinsonian primates reflects global dynamics of the local field potentials. J. Neurosci. 24, 6003 (2004)

    Article  Google Scholar 

  7. Magnin, M., Morel, A., Jeanmonod, D.: Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in Parkinsonian patients. Neuroscience 96(3), 549 (2000)

    Article  Google Scholar 

  8. Chkhenkeli, S.A.: The inhibitory influence of the nucleus caudatus electrostimulation on the human’s amygdalar and hippocampal activity at temporal lobe epilepsy. Bull. Ga. Acad. Sci. 90, 406–411 (1978)

    Google Scholar 

  9. Chkhenkeli, S.A.: Direct deep brain stimulation: First steps towards the feedback control of seizures. In: Milton, J., Jung, P. (eds.) Epilepsy as a Dynamic Disease, pp. 249–261. Springer, Berlin (2003)

    Google Scholar 

  10. Benabid, A.L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D.M., Hommel, M., Perret, J.E., De Rougemont, J.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403–406 (1991)

    Article  Google Scholar 

  11. Tass, P.A., Hauptmann, Ch., Popovych, O.: Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int. J. Bifurc. Chaos 16(7), 1889 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Popovych, O., Hauptmann, Ch., Tass, P.A.: Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett. 94, 164102 (2005)

    Article  ADS  Google Scholar 

  13. Rosenblum, M.G., Pikovsky, A.S.: Controlling synchrony in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Article  ADS  Google Scholar 

  14. Rosenblum, M.G., Pikovsky, A.S.: Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys. Rev. E. 70, 041904 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rosenblum, M., Cimponeriu, L., Tukhlina, N., Pikovsky, A.: Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble. Int. J. Bifurc. Chaos 16(7), 1989–1999 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tukhlina, N., Rosenblum, M., Pikovsky, A., Kurths, J.: Feedback suppression of neural synchrony by vanishing stimulation. Phys. Rev. E 75, 011019 (2007)

    Article  MathSciNet  Google Scholar 

  17. Migulin, V.V., Medvedev, V.I., Mustel’, E.R., Parygin, V.N.: Osnovy Teorii Kolebaniy (Basics of Oscillation Theory). Nauka, Moscow (1978) (in Russian)

    Google Scholar 

  18. Daido, H., Nakanishi, K.: Aging transition and universal scaling in oscillator networks. Phys. Rev. Lett. 93, 104101 (2004)

    Article  ADS  Google Scholar 

  19. Pazó, D., Montbrió, E.: Universal behavior in populations composed of excitable and self-oscillatory elements. Phys. Rev. E. 73, 055202(R) (2006)

    Article  ADS  Google Scholar 

  20. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  21. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Acebron, J.A., Bonilla, L.L., Perez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–175 (2005)

    Article  ADS  Google Scholar 

  23. Bechhoefer, J.: Feedback for physicists: A tutorial essay on control. Rev. Mod. Phys. 77, 783–836 (2005)

    Article  ADS  Google Scholar 

  24. Hassouneh, M.A., Lee, H.-C., Abed, E.H.: Washout filters in feedback control: Benefits, limitations and extensions. In: Proceeding of the 2004 American Control Conference, pp. 3950–3955. AACC, Boston, MA (2004)

    Google Scholar 

  25. Hassouneh, M.A., Lee, H.-C., Abed, E.H.: Washout filters in feedback control: Benefits, limitations and extensions. Technical Report, Institute for Systems Research (2004)

  26. Pyragas, K., Pyragas, V., Kiss, I.Z., Hudson, J.L.: Adaptive control of unknown unstable steady states of dynamical systems. Phys. Rev. E. 92, 026215 (2004)

    Article  ADS  Google Scholar 

  27. Pyragas, K.: Continuous control of chaos, by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  ADS  Google Scholar 

  28. Atay, F.M.: Delayed-feedback control of oscillations in non-linear planar systems. Int. J. Control 75, 297–304 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Atay, F.M.: Oscillation control in delayed feedback systems. In: Dynamics, Bifurcation, and Control, vol. 273 of Lecture Notes in Control and Information Sciences, pp. 103–116. Springer, Berlin (2002)

    Google Scholar 

  30. Hövel, P., Schöll, E.: Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E. 72, 046203 (2005)

    Article  Google Scholar 

  31. Cimponeriu, L., Rosenblum, M.G., Fieseler, T., Dammers, J., Schiek, M., Majtanik, M., Morosan, P., Bezerianos, A., Tass, P.A.: Inferring asymmetric relations between interacting neuronal oscillators. Prog. Theor. Phys. Suppl. 150, 22–36 (2003)

    Article  ADS  Google Scholar 

  32. Montbrió, E., Kurths, J., Blasius, B.: Synchronization of two interacting populations of oscillators. Phys. Rev. E. 70, 056125 (2004)

    Article  ADS  Google Scholar 

  33. Pyragas, K., Popovych, O.V., Tass, P.A.: Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys. Lett. 80, 40002 (2007)

    Article  ADS  Google Scholar 

  34. Tass, P., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J.: Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 81(15), 3291–3294 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We are grateful to Arkady Pikovsky for useful discussions and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Tukhlina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tukhlina, N., Rosenblum, M. Feedback Suppression of Neural Synchrony in Two Interacting Populations by Vanishing Stimulation. J Biol Phys 34, 301–314 (2008). https://doi.org/10.1007/s10867-008-9081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9081-4

Keywords

Navigation