Skip to main content
Log in

Electro-Optical Properties Characterization of Fish Type III Antifreeze Protein

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) are ice-binding proteins that depress the freezing point of water in a non-colligative manner without a significant modification of the melting point. Found in the blood and tissues of some organisms (such as fish, insects, plants, and soil bacteria), AFPs play an important role in subzero temperature survival. Fish Type III AFP is present in members of the subclass Zoarcoidei. AFPIII are small 7-kDa—or 14-kDa tandem—globular proteins. In the present work, we study the behavior of several physical properties, such as the low-frequency dielectric permittivity spectrum, circular dichroism, and electrical conductivity of Fish Type III AFP solutions measured at different concentrations. The combination of the information obtained from these measurements could be explained through the formation of AFP molecular aggregates or, alternatively, by the existence of some other type of interparticle interactions. Thermal stability and electro-optical behavior, when proteins are dissolved in deuterated water, were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raymond, J.A., DeVries, A.L.: Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U S A 74, 2589–2593 (1977)

    Article  ADS  Google Scholar 

  2. Cheng, Y., Yang, Z., Tan, H., Liu, R., Chen, G., Jia, Z.: Analysis of ice-binding sites in Fish Type II Antifreeze protein by quantum mechanics. Biophys. J. 83, 2202–2210 (2002)

    ADS  Google Scholar 

  3. Jorov, A., Zhorov, B.S., Yang, D.S.: Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Sci. 13, 1524–37 (2004)

    Article  Google Scholar 

  4. Strom, C.S., Liu, X.Y., Jia, Z.: Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface. J. Biol. Chem. 279, 32407–32417 (2004)

    Article  Google Scholar 

  5. Prabhu, N., Sharp, K.: Protein-solvent interactions. Chem. Rev. 106, 1616–1623 (2006)

    Article  Google Scholar 

  6. Wen, D., Laursen, R.A.: Structure-function relationships in an antifreeze polypeptide: the effect of added bulky groups on activity. J. Biol. Chem. 268, 16401–16405 (1993)

    Google Scholar 

  7. Sonnichsen, F.D., DeLuca, C.I., Davies, P.L., Sykes, B.D.: Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4, 1325–1337 (1996)

    Article  Google Scholar 

  8. Ko, T.-P., Robinson, H., Gao, Y.-G., Cheng, C.-H.C., DeVries, A.L., Wang, A.H.-J.: The refined crystal structure of an Eel Pout type III antifreeze protein RD1 at 0.62-Å resolution reveals structural microheterogeneity of protein and solvation. Biophys. J. 84, 1228–1237 (2003)

    ADS  Google Scholar 

  9. Du, N., Liu, X.Y., Hew, C.L.: Ice nucleation inhibition. J. Biol. Chem. 278, 36000–36004 (2003)

    Article  Google Scholar 

  10. Liu, X.Y., Du, N.: Zero-sized effect of nano-particles and inverse homogeneous nucleation: principles of freezing and antifreeze. J. Biol. Chem. 279, 6124 – 6131 (2004)

    Article  Google Scholar 

  11. Jessen, T.H., Komiyama, N.H., Tame, J., Pagnier, J., Shih, D., Luisi, B., Fermi, G., Nagai, K.: Production of human hemoglobin in Escherichia coli using cleavable fusion protein expression vector. Methods Enzymol. 231, 347–364 (1994)

    Article  Google Scholar 

  12. Schwan, H.P.: Determination of biological impedances. In: Nastuk, W. (ed.) Physical techniques in biological research, vol VIB, pp. 323–407. Academic, New York (1963)

    Google Scholar 

  13. Raicu, V., Saibara, T., Irimajiri, A.: Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies. Bioelectrochem. Bioenerg. 47, 325 – 332 (1998)

    Article  Google Scholar 

  14. Solovyova, A., Schuck, P., Costenaro, L., Ebel, C.: Non-ideality by sedimentation velocity of malate dehydrogenase in complex solvents. Biophys. J. 81, 1868–1880 (2001)

    Google Scholar 

  15. Bordi, F., Cametti, C., Colby, R.H.: Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J. Phys.: Condens. Matter 16, 1423–1463 (2004)

    Article  ADS  Google Scholar 

  16. Grant, E.H., South, G.P.: Dielectric dispersion in aqueous solutions of oxyhaemoglobin and carboxyhaemoglobin. Biochem. J. 122, 691–699 (1971)

    Google Scholar 

  17. Ananthanarayanan, V.S., Slaughter, D., Hew, C.L.: Antifreeze proteins from the ocean pout, macrozoarces americanus: circular dichroism spectral studies on the native and denatured states. Biochim. Biophys. Acta 870, 154–159 (1986)

    Google Scholar 

  18. Schrag, J.D., Cheng, C.-H.C., Panico, M., Morris, H.R., DeVries, A.L.: Primary and secondary structure of antifreeze peptides from arctic and antarctic zoarcid fishes. Biochim. Biophys. Acta 915, 357–370 (1987)

    Google Scholar 

  19. Garcia-Arribas, O., Mateo, R., Tomczac, M.M., Davies, P.L., Mateu, M.G.: Thermodynamic stability of a cold-adapted protein, Type III Antifreeze Protein, and energetic contribution of salt bridges. Protein Sci. 16, 227 – 238 (2007)

    Article  Google Scholar 

  20. Grant, E.H., Mitton, B.G.R., South, G.P., Sheppard, R.J.: An investigation by dielectric methods of hydration in myoglobin solutions. Biochem. J. 139, 375–380 (1974)

    Google Scholar 

  21. Budayova-Spano, M., Lafont, S., Astier, J.P., Ebel, C., Veesler, S.: Comparison of solubility and interactions of aprotinin (BPTI) solutions in H2O and D2O. J. Cryst. Growth 217, 311–319 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo I. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvay, A.G., Santos, J. & Howard, E.I. Electro-Optical Properties Characterization of Fish Type III Antifreeze Protein. J Biol Phys 33, 389–397 (2007). https://doi.org/10.1007/s10867-008-9080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9080-5

Keywords

Navigation