Skip to main content
Log in

From Membrane Pores to Aquaporins: 50 Years Measuring Water Fluxes

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

This review focuses on studies of water movement across biological membranes performed over the last 50 years. Different scientific approaches had tried to elucidate such intriguing mechanism, from hypotheses emphasizing the role of the lipid bilayer to the cloning of aquaporins, the ubiquitous proteins described as specific water channels. Pioneering and clarifying biophysical work are reviewed beside results obtained with the help of recent sophisticated techniques, to conclude that great advances in the subject live together with old questions without definitive answers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohmann, S., Nielsen, S.: Preface. In: Hohmann, S., Nielsen, S. (eds.) Molecular Biology and Physiology of Water and Solute Transport, pp. v–vi. Plenum, New York (2000)

    Google Scholar 

  2. Parisi, M., Amodeo, G., Capurro, C., Dorr, R., Ford, P., Toriano, R.: Biophysical properties of epithelial water channels. Biophys. Chem. 68(1–3), 255–263 (1997)

    Article  Google Scholar 

  3. Verkman, A.S.: Water permeability measurement in living cells and complex tissues. J. Membr. Biol. 173(2), 73–87 (2000)

    Article  Google Scholar 

  4. Sidel, V.W., Solomon, A.K.: Entrance of water into human red cells under an osmotic pressure gradient. J. Gen. Physiol. 41(2), 243–257 (1957)

    Article  Google Scholar 

  5. Paganelli, C.V., Solomon, A.K.: The rate of exchange of tritiated water across the human red cell membrane. J. Gen. Physiol. 41(2), 259–277 (1957)

    Article  Google Scholar 

  6. Goldstein, D.A., Solomon, A.K.: Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. Gen. Physiol. 44, 1–17 (1960)

    Article  Google Scholar 

  7. Zadunaisky, J.A., Parisi, M.N., Montoreano, R.: Effect of antidiuretic hormone on permeability of single muscle fibres. Nature 200, 365–366 (1963)

    Article  ADS  Google Scholar 

  8. Villegas, R., Villegas, G.M.: Characterization of the membranes in the giant nerve fiber of the squid. J. Gen. Physiol. 43, 73–103 (1960)

    Article  Google Scholar 

  9. Dainty, J., House, C.R.: Unstirred layers in frog skin. J. Physiol. 182(1), 66–78 (1966)

    Google Scholar 

  10. Dainty, J., House, C.R.: An examination of the evidence for membrane pores in frog skin. J. Physiol. 185(1), 172–184 (1966)

    Google Scholar 

  11. Hanai, T., Haydon, D.A., Redwood, W.R.: The water permeability of artificial bimolecular leaflets: a comparison of radio-tracer and osmotic methods. Ann. NY Acad. Sci. 137(2), 731–739 (1966)

    Article  ADS  Google Scholar 

  12. Hanai, T., Haydon, D.A.: The permeability to water of bimolecular lipid membranes. J. Theor. Biol. 11(3), 370–382 (1966)

    Article  Google Scholar 

  13. Rosenberg, P.A., Finkelstein, A.: Water permeability of gramicidin a-treated lipid bilayer membranes. J. Gen. Physiol. 72(3), 341–350 (1978)

    Article  Google Scholar 

  14. Finkelstein, A., Andersen, O.S.: The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol. 59(3), 155–171 (1981)

    Article  Google Scholar 

  15. Urban, B.W., Hladky, S.B., Haydon, D.A.: Ion movements in gramicidin pores. An example of single-file transport. Biochim. Biophys. Acta 602(2), 331–354 (1980)

    Article  Google Scholar 

  16. Chui, S.W., Jakobsson, E., Subramahiam, S., McCammon, J.A.: Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys. J. 60, 273–285 (1991)

    Google Scholar 

  17. Chui, S.W., Subramahiam, S., Jakobsson, E.: Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Rates and mechanisms of water transport. Biophys. J. 76, 1929–1938 (1999)

    Google Scholar 

  18. Muller, J., Kachadorian, W.A., Discala, V.A.: Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85, 83–95 (1980)

    Article  Google Scholar 

  19. Parisi, M., Bourguet, J., Ripoche, P., Chevalier, J.: Simultaneous minute by minute determination of unidirectional and net water fluxes in frog urinary bladder. A reexamination of the two barriers in series hypothesis. Biochim. Biophys. Acta 556(3), 509–523 (1979)

    Article  Google Scholar 

  20. Parisi, M., Bourguet, J.: The single file hypothesis and the water channels induced by antidiuretic hormone. J. Membr. Biol. 71(3), 189–193 (1983)

    Article  Google Scholar 

  21. Hays, R.M., Carvounis, C.P., Franki, N., Levine, S.D.: Water permeation in epithelial tissues: current concepts. In: Bourguet, J., Chevalier, J., Parisi, M., Ripoche, P. (eds.) Hormonal Control of Epithelial Transport, vol 85, pp. 281–288. INSERM, Paris (1979)

    Google Scholar 

  22. Levine, S.D., Jacoby, M., Finkelstein, A.: The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone-induced water permeation pathway. J. Gen. Physiol. 83(4), 543–61 (1984)

    Article  Google Scholar 

  23. Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S.: Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361, 549–552 (1993)

    Article  ADS  Google Scholar 

  24. Nielsen, S., Chou, C.L., Marples, D., Christensen, E.I., Kishore, B.K., Knepper, M.A.: Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl. Acad. Sci. USA 92, 1013–1017 (1995)

    Article  ADS  Google Scholar 

  25. Toriano, R., Ford, P., Rivarola, V., Tamarappoo, B.K., Verkman, A.S., Parisi, M.: Reconstitution of a regulated transepithelial water pathway in cells transfected with AQP2 and an AQP1/2 hybrid containing the AQP2-C-terminus. J. Membr. Biol. 161, 141–149 (1998)

    Article  Google Scholar 

  26. Johnsen, A.H., Nielsen, R.: Enhanced sensitivity to stimulation of sodium transport and cyclic AMP by antidiuretic hormone after Ca2+ depletion of isolated frog skin epithelium. J. Membr. Biol. 69, 137–143 (1982)

    Article  Google Scholar 

  27. Gulyassy, P.F., Edelman, I.S.: Hydrogen ion dependence of the antidiuretic action of vasopressin, oxytocin, and deaminooxytocin. Biochim. Biophys. Acta 102, 185–197 (1965)

    Article  Google Scholar 

  28. Carvounis, C.P., Levine, S.D., Hays, R.M.: pH dependence of water and solute transport in toad urinary bladder. Kidney Int. 15, 513–519 (1979)

    Article  Google Scholar 

  29. Parisi, M., Chevalier, J., Bourguet, J.: Influence of mucosal and serosal pH on antidiuretic action in frog urinary bladder. Am. J. Physiol. 237(6), F483–F489 (1979)

    Google Scholar 

  30. Parisi, M., Montoreano, R., Chevalier, J., Bourguet, J.: Cellular pH and water permeability control in frog urinary bladder. A possible action on the water pathway. Biochim. Biophys. Acta 648(2), 267–274 (1981)

    Article  Google Scholar 

  31. Parisi, M., Bourguet, J.: Effects of cellular acidification on ADH-induced intramembrane particle aggregates. Am. J. Physiol. 246(1 Pt 1), C157–C159 (1984)

    Google Scholar 

  32. Amodeo, G., Sutka, M., Dorr, R., Parisi, M.: Protoplasmic pH modifies water and solute transfer in Beta vulgaris root vacuoles. J. Membr. Biol. 187(3), 175–184 (2002)

    Article  Google Scholar 

  33. Hedfalk, K., Törnroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P., Neutze, R.: Aquaporin gating. Curr. Opin. Struct. Biol. 16(4), 447–456 (2006)

    Article  Google Scholar 

  34. Chaumont, F., Moshelion, M., Daniels, M.J.: Regulation of plant aquaporin activity. Biol. Cell 97(10), 749–764 (2005)

    Article  Google Scholar 

  35. Macey, R.I.: Transport of water and urea in red blood cells. Am. J. Physiol. 246, C195–C203 (1984)

    Google Scholar 

  36. Solomon, A.K., Chasan, B., Dix, J.A., Lukacovic, M.F., Toon, M.R., Verkman, A.S.: The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414, 79–124 (1984)

    Google Scholar 

  37. Verkman, A.S., Weyer, P., Brown, D., Ausiello, D.A.: Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J. Biol. Chem. 264, 20608–20613 (1989)

    Google Scholar 

  38. Meyer, M.M., Verkman, A.S.: Evidence for water channels in renal proximal tubule cell membranes. J. Membr. Biol. 96, 107–119 (1987)

    Article  Google Scholar 

  39. Whittembury, G., Carpi-Medina, P., Gonzalez, E., Linares, H.: Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim. Biophys. Acta 775(3), 365–373 (1984)

    Article  Google Scholar 

  40. Ye, R., Shi, L.B., Lencer, W., Verkman, A.S.: Functional colocalization of water channels and proton pumps in endosomes from kidney proximal tubule. J. Gen. Physiol. 93, 885–902 (1989)

    Article  Google Scholar 

  41. Al-Zahid, G., Schafer, J.A., Troutman, S.L., Andreoli, T.E.: Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J. Membr. Biol. 31, 103–129 (1977)

    Article  Google Scholar 

  42. Verkman, A.S., Lencer, W.I., Brown, D., Ausiello, D.A.: Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333, 268–269 (1988)

    Article  ADS  Google Scholar 

  43. Brown, D.: Membrane recycling and epithelial cell function. Am. J. Physiol. 256, F1–F12 (1989)

    ADS  Google Scholar 

  44. Zhang, R., Logee, K.A., Verkman, A.S.: Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J. Biol. Chem. 265(26), 15375–15378 (1990)

    Google Scholar 

  45. Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P.: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055), 385–387 (1992)

    Article  ADS  Google Scholar 

  46. Parisi, M., Bourguet, J.: Water channels in animal cells: a widespread structure? Biol. Cell. 55(3), 155–157 (1985)

    Google Scholar 

  47. Agre, P.: Nobel Lecture. Aquaporin water channels. Biosci. Rep. 24(3), 127–163 (2004)

    Article  Google Scholar 

  48. King, L.S., Kozono, D., Agre, P.: From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687–698 (2004)

    Article  Google Scholar 

  49. Takata, K., Matsuzaki, T., Tajika, Y.: Aquaporins: water channel proteins of the cell membrane. Prog. Histochem. Cytochem. 39, 1–83 (2004)

    Article  Google Scholar 

  50. Zampighi, G.A., Kreman, M., Boorer, K.J., Loo, D.D., Bezanilla, F., Chandy, G., Hall, J.E., Wright, E.M.: A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148(1), 65–78 (1995)

    Google Scholar 

  51. Mulders, S.M., Preston, G., Deen, P., Guggino, W., Van Os, C., Agre, P.: Water channel properties of major intrinsic protein of lens. J. Biol. Chem. 270, 9010–9016 (1995)

    Article  Google Scholar 

  52. Engel, A., Fujiyoshi, Y., Gonen, T., Walz, T.: Junction-forming aquaporins. Curr. Opin. Struct. Biol. 2008 Jan 12 [Epub ahead of print] In press

  53. Han, B.G., Guliaev, A.B., Walian, P.J., Jap, B.K.: Water transport in AQP0 aquaporin: molecular dynamics studies. J. Mol. Biol. 360(2), 285–96 (2006)

    Article  Google Scholar 

  54. Verkman, A.S., Mitra, A.K.: Structure and function of aquaporin water channels. Am. J. Physiol. 278, F13–F28 (2000)

    Google Scholar 

  55. Jung, J.S., Preston, G.M., Smith, B.L., Guggino, W.B., Agre, P.: Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994)

    Google Scholar 

  56. Smith, B.L., Agre, P.: Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407–6415 (1991)

    Google Scholar 

  57. Walz, T., Smith, B.L., Zeidel, M.L., Engel, A., Agre, P.: Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 269, 1583–1586 (1994)

    Google Scholar 

  58. Mathai, J.C., Agre, P.: Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly. Biochemistry 38, 923–928 (1999)

    Article  Google Scholar 

  59. Neely, J.D., Christensen, B.M., Nielsen, S., Agre, P.: Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38, 11156–11163 (1999)

    Article  Google Scholar 

  60. Preston, G.M., Jung, J.S., Guggino, W.B., Agre, P.: The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 (1993)

    Google Scholar 

  61. Walz, T., Hirai, T., Murata, K., Heymann, J.B., Mitsuoka, K., Fujiyoshi, Y., Smith, B.L., Agre, P., Engel, A.: The three-dimensional structure of aquaporin-1. Nature 387, 624–627 (1997)

    Article  ADS  Google Scholar 

  62. Cheng, A., van Hoek, A.N., Yeager, M., Verkman, A.S., Mitra, A.K.: Three-dimensional organization of a human water channel. Nature 387, 627–630 (1997)

    Article  ADS  Google Scholar 

  63. Mitsuoka, K., Murata, K., Walz, T., Hirai, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y.: The structure of aquaporin-1 at 4.5-Å resolution reveals short alpha-helices in the center of the monomer. J. Struct. Biol. 128, 34–43 (1999)

    Article  Google Scholar 

  64. Ren, G., Cheng, A., Reddy, V., Melnyk, P., Mitra, A.K.: Three-dimensional fold of the human AQP1 water channel determined at 4 Å resolution by electron crystallography of two-dimensional crystals embedded in ice. J. Mol. Biol. 301, 369–387 (2000)

    Article  Google Scholar 

  65. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y.: Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)

    Article  ADS  Google Scholar 

  66. Fu, D., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M.: Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)

    Article  ADS  Google Scholar 

  67. Sui, H., Han, B.G., Lee, J.K., Walian, P., Jap, B.K.: Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)

    Article  ADS  Google Scholar 

  68. de Groot, B.L., Grubmüller, H.: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)

    Article  ADS  Google Scholar 

  69. Agre, P., Lee, M.D., Devidas, S., Guggino, W.B.: Aquaporins and ion conductance. Science 275, 1490–1492 (1997)

    Article  Google Scholar 

  70. Tsunoda, S.P., Wiesner, B., Lorenz, D., Rosenthal, W., Pohl, P.: Aquaporin-1, nothing but a water channel. J. Biol. Chem. 279, 11364–11367 (2004)

    Article  Google Scholar 

  71. Jensen, M.Ø., Tajkhorshid, E., Schulten, K.: Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85, 2884–2899 (2003)

    ADS  Google Scholar 

  72. Burykin, A., Warshel, A.: What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85, 3696–3706 (2003)

    ADS  Google Scholar 

  73. de Groot, B.L., Engel, A., Grubmüller, H.: The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography. J. Mol. Biol. 325, 485–493 (2003)

    Article  Google Scholar 

  74. Chakrabarti, N., Roux, B., Pomès, R.: Structural determinants of proton blockage in aquaporins. J. Mol. Biol. 343, 493–510 (2004)

    Article  Google Scholar 

  75. Yang, B., Song, Y., Zhao, D., Verkman, A.S.: Phenotype analysis of aquaporin-8 null mice. Am. J. Physiol. Cell. Physiol. 288, C1161–C1170 (2005)

    Article  Google Scholar 

  76. Wang, K.S., Ma, T., Filiz, F., Verkman, A.S., Bastidas, J.A.: Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G463–G670 (2000)

    Google Scholar 

  77. Toriano, R., Kierbel, A., Ramirez, M.A., Malnic, G., Parisi, M.: Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187. Am. J. Physiol. Gastrointest. Liver Physiol. 281, 816–822 (2001)

    Google Scholar 

  78. Capurro, C., Rivarola, V., Kierbel, A., Escoubet, B., Farman, N., Blot-Chabaud, M., Parisi, M.: Vasopressin regulates water flow in a rat cortical collecting duct cell line not containing known aquaporins. J. Membr. Biol. 179, 63–70 (2001)

    Article  Google Scholar 

  79. Chara, O., Ford, P., Rivarola, V., Parisi, M., Capurro, C.: Asymmetry in the osmotic response of a rat cortical collecting duct cell line: role of aquaporin-2. J. Membr. Biol. 207, 143–150 (2005)

    Article  Google Scholar 

  80. Hill, A.E., Shachar-Hill, B., Shachar-Hill, Y.: What are aquaporins for? J. Membr. Biol. 197, 1–32 (2004)

    Article  Google Scholar 

  81. Fischbarg, J., Diecke, F.P., Iserovich, P., Rubashkin, A.: The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J. Membr. Biol. 210(2), 117–130 (2006)

    Article  Google Scholar 

  82. Agre, P., Nielsen, S., Ottersen, O.P.: Towards a molecular understanding of water homeostasis in the brain. Neuroscience 12, 849–850 (2004)

    Article  Google Scholar 

  83. Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., Nielsen, S.: Aquaporin water channels: from atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002)

    Article  Google Scholar 

  84. MacAulay, N., Hamann, S., Zeuthen, T.: Water transport in the brain: role of cotransporters. Neuroscience 129, 1031–1044 (2004)

    Article  Google Scholar 

  85. Gagnon, M.P., Bissonnette, P., Deslandes, L.M., Wallendorff, B., Lapointe, J.Y.: Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Biophys. J. 86, 125–133 (2004)

    Google Scholar 

  86. Duquette, P.P., Bisonnette, P., Lapointe, J.Y.: Local osmotic gradients drive the water flux associated with Na+/glucose cotransport. Proc. Natl. Acad. Sci. USA 98, 3796–3801 (2001)

    Article  ADS  Google Scholar 

  87. Charron, F.M., Blanchard, M.G., Lapointe, J.Y.: Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys. J. 90, 3546–3554 (2006)

    Article  ADS  Google Scholar 

  88. Fischbarg, J., Kunyan, K., Vera, J.C., Arant, S., Silverstein, S., Loike, J., Rosen, O.M.: Glucose transporters serve as water channels. Proc. Natl. Acad. Sci. USA 87, 3244–3247 (1990)

    Article  ADS  Google Scholar 

  89. Iserovich, P., Wang, D., Ma, L., Zuniga, F.A., Pascual, J.M., Kuang, K., De Vivo, D.C., Fischbarg, J.: Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer. J. Biol. Chem. 277, 30991–30997 (2002)

    Article  Google Scholar 

  90. Zeuthen, T., Zeuthen, E., MacAulay, N.: Water transport by GLUT2 expressed in Xenopus laevis oocytes. J. Physiol. 579, 345–361 (2007)

    Article  Google Scholar 

  91. Loo, D.D., Hirayama, B.A., Meinild, A.K., Chandy, G., Zeuthen, T., Wright, E.M.: Passive water and ion transport by cotransporter. J. Physiol. 518, 195–202 (1999)

    Article  Google Scholar 

  92. Zeuthen, T., Belhage, B., Zeuthen, E.: Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J. Physiol. 570, 485–499 (2006)

    Article  Google Scholar 

  93. Ma, T., Frigeri, A., Tsai, S.T., Verbavatz, J.M., Verkman, A.S.: Localization and functional analysis of CHIP28k water channels in stably transfected CHO cells. J. Biol. Chem. 268, 22756–22764 (1993)

    Google Scholar 

  94. Farinas, J., Simenak, V., Verkman, A.S.: Cell volume measured in adherent cells by total internal reflection microfluorimetry: application to permeability in cells transfected with water channel homologs. Biophys. J. 68, 1613–1620 (1995)

    Google Scholar 

  95. Farinas, J., Verkman, A.S.: Measurement of cell volume and water permeability in epithelial cell layers by interferometry. Biophys. J. 71, 3511–3522 (1996)

    Article  ADS  Google Scholar 

  96. Farinas, J., Kneen, M., Moore, M., Verkman, A.S.: Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J. Gen. Physiol. 110, 283–296 (1997)

    Article  Google Scholar 

  97. Dorr, R.A., Kierbel, A., Vera, J., Parisi, M.: A new data-acquisition system for the measurement of the net water flux across epithelia. Comput. Methods Programs Biomed. 53(1), 9–14 (1997)

    Article  Google Scholar 

  98. Dorr, R., Ozu, M., Parisi, M.: Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins. J. Neurosci. Methods 161(2), 301–5 (2007)

    Article  Google Scholar 

  99. Ozu, M., Dorr, R., Parisi, M.: New method to measure water permeability in emptied-out Xenopus oocytes controlling conditions on both sides of the membrane. J. Biochem. Biophys. Methods 63(3), 187–200 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Toriano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi, M., Dorr, R.A., Ozu, M. et al. From Membrane Pores to Aquaporins: 50 Years Measuring Water Fluxes. J Biol Phys 33, 331–343 (2007). https://doi.org/10.1007/s10867-008-9064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9064-5

Keywords

Navigation