Skip to main content
Log in

Modeling Complex Biological Macromolecules: Reduction of Multibead Models

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The shape of simple and complex biological macromolecules can be approximated by bead modeling procedures. Such approaches are required, for example, for the analysis of the scattering and hydrodynamic behavior of the models under analysis and the prediction of their molecular properties. Using the atomic coordinates of proteins for modeling inevitably leads to models composed of a multitude of beads. In particular, for hydrodynamic modeling, a drastic reduction of the bead number may become unavoidable to enable computation. A systematic investigation of different approaches and computation modes shows that the ‘running mean’, ‘cubic grid,’ and ‘hexagonal grid’ approaches are successful, provided that the extent of reduction does not exceed a factor of 100 and the grid approaches use beads of unequal size and the beads are located at the centers of gravity. Further precautions to be taken include usage of appropriate interaction tensors for overlapping beads of unequal size and appropriate volume corrections when calculating intrinsic viscosities. The applied procedures were tested with the small protein lysozyme in a case study and were then applied to the huge capsid of the phage fr and its trimeric building block. The appearance of the models and the agreement of molecular properties and distance distribution functions of unreduced and reduced models can be used as evaluation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glatter, O., Kratky, O. (eds.): Small Angle X-ray Scattering. Academic, London (1982)

  2. Durchschlag, H.: Small-angle X-ray scattering of proteins in relation to food systems, with special emphasis on enzymes and storage proteins. In: Baianu, I.C., Pessen, H., Kumosinski, T.F. (eds.) Physical Chemistry of Food Processes, Vol. 2 Advanced Techniques, Structures, and Applications, pp. 18-117. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  3. Harding, S.E., Rowe, A.J., Horton, J.C. (eds.): Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge (1992)

  4. Scott, D.J., Harding, S.E., Rowe, A.J. (eds.): Analytical Ultracentrifugation: Techniques and Methods. Royal Society of Chemistry, Cambridge (2005)

  5. Svergun, D.I., Koch, M.H.J.: Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735–1782 (2003)

    Article  ADS  Google Scholar 

  6. Zipper, P., Durchschlag, H., Krebs, A.: Modelling of biopolymers. In: Scott, D.J., Harding, S.E., Rowe, A.J. (eds.) Analytical Ultracentrifugation: Techniques and Methods, pp. 320-371. Royal Society of Chemistry, Cambridge (2005)

    Google Scholar 

  7. García de la Torre, J., Navarro, S., López Martínez, M.C., Díaz, F.G., López Cascales, J.J.: HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophys. J. 67, 530-531 (1994)

    Google Scholar 

  8. García de la Torre, J., Huertas, M.L., Carrasco, B.: Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719-730 (2000)

    Google Scholar 

  9. Zipper, P., Durchschlag, H.: Calculation of hydrodynamic parameters of proteins from crystallographic data using multibody approaches. Prog. Colloid & Polym. Sci. 107, 58-71 (1997)

    Article  Google Scholar 

  10. Zipper, P., Durchschlag, H.: Recent advances in the calculation of hydrodynamic parameters from crystallographic data by multibody approaches. Biochem. Soc. Trans. 26, 726-731 (1998)

    Google Scholar 

  11. Zipper, P., Durchschlag, H.: Prediction of hydrodynamic and small-angle scattering parameters from crystal and electron microscopic structures. J. Appl. Crystallogr. 33, 788-792 (2000)

    Article  Google Scholar 

  12. Zipper, P., Krebs, A., Durchschlag, H.: Prediction of hydrodynamic parameters of Lumbricus terrestris hemoglobin from small-angle X-ray and electron microscopic structures. Prog. Colloid & Polym. Sci. 119, 141-148 (2002)

    Article  Google Scholar 

  13. Zipper, P., Durchschlag, H.: Modeling of protein solution structures. J. Appl. Crystallogr. 36, 509-514 (2003)

    Article  Google Scholar 

  14. Krebs, A., Durchschlag, H., Zipper, P.: Small angle X-ray scattering studies and modeling of Eudistylia vancouverii chlorocruorin and Macrobdella decora hemoglobin. Biophys. J. 87, 1173-1185 (2004)

    Article  Google Scholar 

  15. Durchschlag, H., Zipper, P.: Calculation of volume, surface, and hydration properties of biopolymers. In: Scott, D.J., Harding, S.E., Rowe, A.J. (eds.) Analytical Ultracentrifugation: Techniques and Methods, pp. 389-431. Royal Society of Chemistry, Cambridge (2005)

    Google Scholar 

  16. Zipper, P., Durchschlag, H.: Modelling of bacteriophage capsids and free nucleic acids. J. Appl. Crystallogr. 40, s153-s158 (2007)

    Article  Google Scholar 

  17. Durchschlag, H., Zipper, P., Krebs, A.: A comparison of protein models obtained by small-angle X-ray scattering and crystallography. J. Appl. Crystallogr. 40, 1123-1134 (2007)

    Article  Google Scholar 

  18. Durchschlag, H., Zipper, P.: Volume, surface and hydration properties of proteins. Prog. Colloid & Polym. Sci. in press (2008)

  19. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235-242 (2000)

    Article  Google Scholar 

  20. Durchschlag, H., Zipper, P.: Modeling the hydration of proteins at different pH values. Prog. Colloid & Polym. Sci. 127, 98-112 (2004)

    Google Scholar 

  21. Traube, J.: Ueber den Raum der Atome. Samml. chem. chem.-tech. Vortr. 4, 255-332 (1899)

    Google Scholar 

  22. Sayle, R.A., Milner-White, E.J.: RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374-376 (1995)

    Article  Google Scholar 

  23. Glatter, O.: Computation of distance distribution functions and scattering functions of models for small angle scattering experiments. Acta Phys. Austriaca 52, 243-256 (1980)

    Google Scholar 

  24. García de la Torre, J., del Rio Echenique, G., Ortega, A.: Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles. J. Phys. Chem. B 111, 955-961 (2007)

    Article  Google Scholar 

  25. Zipper, P., Durchschlag, H.: Prediction of hydrodynamic parameters from 3D structures. Prog. Colloid & Polym. Sci. 113, 106-113 (1999)

    Article  Google Scholar 

  26. Carrasco, B., García de la Torre, J., Zipper, P.: Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres. Eur. Biophys. J. 28, 510-515 (1999)

    Article  Google Scholar 

  27. García de la Torre, J., Carrasco, B.: Intrinsic viscosity and rotational diffusion of bead models for rigid macromolecules and bioparticles. Eur. Biophys. J. 27, 549-557 (1998)

    Article  Google Scholar 

  28. García de la Torre, J., Bloomfield, V.A.: Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q. Rev. Biophys. 14, 81-139 (1981)

    Article  Google Scholar 

  29. García Bernal, J.M., García de la Torre, J.: Transport properties of oligomeric subunit structures. Biopolymers 20, 129-139 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Durchschlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zipper, P., Durchschlag, H. Modeling Complex Biological Macromolecules: Reduction of Multibead Models. J Biol Phys 33, 523–539 (2007). https://doi.org/10.1007/s10867-008-9063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9063-6

Keywords

Navigation