Skip to main content
Log in

Influence of Distal Residue B10 on CO Dynamics in Myoglobin and Neuroglobin

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

For many years, myoglobin has served as a paradigm for structure–function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O2, CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardison, R.C.: A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U. S. A. 93, 5675–5679 (1996)

    Article  ADS  Google Scholar 

  2. Weber, R.E., Vinogradov, S.N.: Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol. Rev. 81, 569–628 (2001)

    Google Scholar 

  3. Bisig, D.A., Di Iorio, E.E., Diederichs, K., Winterhalter, K.H., Piontek, K.: Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-A resolution. Phe29(B10) accounts for its unusual ligand binding properties. J. Biol. Chem. 270, 20754–20762 (1995)

    Article  Google Scholar 

  4. Olson, J.S., Mathews, A.J., Rohlfs, R.J., Springer, B.A., Egeberg, K.D., Sligar, S.G., Tame, J., Renaud, J.P., Nagai, K.: The role of the distal histidine in myoglobin and haemoglobin. Nature 336, 265–266 (1988)

    Article  ADS  Google Scholar 

  5. Olson, J.S., Phillips Jr., G.N.: Kinetic pathways and barriers for ligand binding to myoglobin. J. Biol. Chem. 271, 17593–17596 (1996)

    Article  Google Scholar 

  6. Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M.: Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277, 871–874 (2002)

    Article  Google Scholar 

  7. Gardner, P.R., Gardner, A.M., Martin, L.A., Salzman, A.L.: Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. U. S. A. 95, 10378–10383 (1998)

    Article  ADS  Google Scholar 

  8. Arredondo-Peter, R., Hargrove, M.S., Moran, J.F., Sarath, G., Klucas, R.V.: Plant hemoglobins. Plant Physiol. 118, 1121–1125 (1998)

    Article  Google Scholar 

  9. Smagghe, B.J., Kundu, S., Hoy, J.A., Halder, P., Weiland, T.R., Savage, A., Venugopal, A., Goodman, M., Premer, S., Hargrove, M.S.: Role of phenylalanine B10 in plant nonsymbiotic hemoglobins. Biochemistry 45, 9735–9745 (2006)

    Article  Google Scholar 

  10. Burmester, T., Weich, B., Reinhardt, S., Hankeln, T.: A vertebrate globin expressed in the brain. Nature 407, 520–523 (2000)

    Article  ADS  Google Scholar 

  11. Burmester, T., Ebner, B., Weich, B., Hankeln, T.: Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19, 416–421 (2002)

    Google Scholar 

  12. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)

    Article  Google Scholar 

  13. Nienhaus, G.U., Heinzl, J., Huenges, E., Parak, F.: Protein crystal dynamics studied by time-resolved analysis of X-ray diffuse scattering. Nature 338, 665–666 (1989)

    Article  ADS  Google Scholar 

  14. Frauenfelder, H., Nienhaus, G.U., Johnson, J.B.: Rate processes in proteins. Ber. Bunsenges. Phys. Chem. 95, 272–278 (1991)

    Google Scholar 

  15. Parak, F.G., Nienhaus, G.U.: Myoglobin, a paradigm in the study of protein dynamics. Chem. Phys. Chem. 3, 249–254 (2002)

    Google Scholar 

  16. Samuni, U., Dantsker, D., Roche, C.J., Friedman, J.M.: Ligand recombination and a hierarchy of solvent slaved dynamics: the origin of kinetic phases in hemeproteins. Gene 398, 234–248 (2007)

    Article  Google Scholar 

  17. Parak, F., Frolov, E.N., Mössbauer, R.L., Goldanskii, V.I.: Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145, 825–833 (1981)

    Article  Google Scholar 

  18. Parak, F., Knapp, E.W., Kucheida, D.: Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Biol. 161, 177–194 (1982)

    Article  Google Scholar 

  19. Nienhaus, G.U., Mourant, J.R., Chu, K., Frauenfelder, H.: Ligand binding to heme proteins: the effect of light on ligand binding in myoglobin. Biochemistry 33, 13413–13430 (1994)

    Article  Google Scholar 

  20. Nienhaus, G.U., Nienhaus, K.: Infrared study of carbon monoxide migration among internal cavities of myoglobin mutant L29W. J. Biol. Phys. 28, 163–172 (2002)

    Article  Google Scholar 

  21. Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: The effect of internal cavities on ligand migration and binding. Biochemistry 42, 9647–9658 (2003)

    Article  Google Scholar 

  22. Scott, E.E., Gibson, Q.H.: Ligand migration in sperm whale myoglobin. Biochemistry 36, 11909–11917 (1997)

    Article  Google Scholar 

  23. Scott, E.E., Gibson, Q.H., Olson, J.S.: Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276, 5177–5188 (2001)

    Article  Google Scholar 

  24. Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A.E., Sciara, G., Wulff, M., Anfinrud, P., Brunori, M.: Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. U. S. A. 100, 8704–8709 (2003)

    Article  ADS  Google Scholar 

  25. Hartmann, H., Zinser, S., Komninos, P., Schneider, R.T., Nienhaus, G.U., Parak, F.: X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. U. S. A. 93, 7013–7016 (1996)

    Article  ADS  Google Scholar 

  26. Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, G.U.: Ligand binding and conformational motions in myoglobin. Nature 404, 205–208 (2000)

    Article  ADS  Google Scholar 

  27. Schlichting, I., Berendzen, J., Phillips Jr., G.N., Sweet, R.M.: Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 (1994)

    Article  ADS  Google Scholar 

  28. Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Nienhaus, G.U., Srajer, V.: Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc. Natl. Acad. Sci. U. S. A. 102, 11704–11709 (2005)

    Article  ADS  Google Scholar 

  29. Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips Jr., G.N., Wulff, M., Anfinrud, P.A.: Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947 (2003)

    Article  ADS  Google Scholar 

  30. Teng, T.Y., Srajer, V., Moffat, K.: Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat. Struct. Biol. 1, 701–705 (1994)

    Article  Google Scholar 

  31. Perutz, M.F.: Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem. Sci. 14, 42–44 (1989)

    Article  Google Scholar 

  32. Johnson, K.A., Olson, J.S., Phillips Jr., G.N.: Structure of myoglobin-ethyl isocyanide. Histidine as a swinging door for ligand entry. J. Mol. Biol. 207, 459–463 (1989)

    Article  Google Scholar 

  33. Tilton Jr., R.F., Kuntz Jr., I.D., Petsko, G.A.: Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984)

    Article  Google Scholar 

  34. Gibson, Q.H., Regan, R., Elber, R., Olson, J.S., Carver, T.E.: Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. J. Biol. Chem. 267, 22022–22034 (1992)

    Google Scholar 

  35. Schotte, F., Soman, J., Olson, J.S., Wulff, M., Anfinrud, P.A.: Picosecond time-resolved X-ray crystallography: probing protein function in real time. J. Struct. Biol. 147, 235–246 (2004)

    Article  Google Scholar 

  36. Li, T., Quillin, M.L., Phillips Jr., G.N., Olson, J.S.: Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry 33, 1433–1446 (1994)

    Article  Google Scholar 

  37. Nienhaus, K., Deng, P., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics of myoglobin: Spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Biochemistry 42, 9633–9646 (2003)

    Article  Google Scholar 

  38. Brunori, M., Cutruzzola, F., Savino, C., Travaglini-Allocatelli, C., Vallone, B., Gibson, Q.H.: Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys. J. 76, 1259–1269 (1999)

    Google Scholar 

  39. Nienhaus, K., Ostermann, A., Nienhaus, G.U., Parak, F.G., Schmidt, M.: Ligand migration and protein fluctuations in myoglobin mutant L29W. Biochemistry 44, 5095–5105 (2005)

    Article  Google Scholar 

  40. Brunori, M., Vallone, B., Cutruzzola, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M., Schlichting, I.: The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc. Natl. Acad. Sci. U. S. A. 97, 2058–2063 (2000)

    Article  ADS  Google Scholar 

  41. Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O., Nienhaus, G.U.: Ligand binding and protein dynamics in neuroglobin. Proc. Natl. Acad. Sci. U. S. A. 99, 7992–7997 (2002)

    Article  ADS  Google Scholar 

  42. Nienhaus, K., Kriegl, J.M., Nienhaus, G.U.: Structural dynamics in the active site of murine neuroglobin and its effects on ligand binding. J. Biol. Chem. 279, 22944–22952 (2004)

    Article  Google Scholar 

  43. Vallone, B., Nienhaus, K., Brunori, M., Nienhaus, G.U.: The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins 56, 85–92 (2004)

    Article  Google Scholar 

  44. Vallone, B., Nienhaus, K., Matthes, A., Brunori, M., Nienhaus, G.U.: The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc. Natl. Acad. Sci. U. S. A. 101, 17351–17356 (2004)

    Article  ADS  Google Scholar 

  45. Nienhaus, G.U., Chu, K., Jesse, K.: Structural heterogeneity and ligand binding in carbonmonoxy myoglobin crystals at cryogenic temperatures. Biochemistry 37, 6819–6823 (1998)

    Article  Google Scholar 

  46. Alben, J.O., Beece, D., Bowne, S.F., Doster, W., Eisenstein, L., Frauenfelder, H., Good, D., McDonald, J.D., Marden, M.C., Moh, P.P., Reinisch, L., Reynolds, A.H., Shyamsunder, E., Yue, K.T.: Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 79, 3744–3748 (1982)

    Article  ADS  Google Scholar 

  47. Yang, F., Phillips Jr., G.N.: Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J. Mol. Biol. 256, 762–774 (1996)

    Article  Google Scholar 

  48. Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R.M., Schlichting, I.: Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174 (1999)

    Google Scholar 

  49. Lim, M., Jackson, T.A., Anfinrud, P.A.: Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 4, 209–214 (1997)

    Article  Google Scholar 

  50. Kriegl, J.M., Nienhaus, K., Deng, P., Fuchs, J., Nienhaus, G.U.: Ligand dynamics in a protein internal cavity. Proc. Natl. Acad. Sci. U. S. A. 100, 7069–7074 (2003)

    Article  ADS  Google Scholar 

  51. Lehle, H., Kriegl, J.M., Nienhaus, K., Deng, P., Fengler, S., Nienhaus, G.U.: Probing electric fields in protein cavities by using the vibrational Stark effect of carbon monoxide. Biophys. J. 88, 1978–1990 (2005)

    Article  Google Scholar 

  52. Nienhaus, K., Olson, J.S., Franzen, S., Nienhaus, G.U.: The origin of Stark splitting in the initial photoproduct state of MbCO. J. Am. Chem. Soc. 127, 40–41 (2005)

    Article  Google Scholar 

  53. Springer, B.A., Sligar, S.G.: High-level expression of sperm whale myoglobin in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 84, 8961–8965 (1987)

    Article  ADS  Google Scholar 

  54. Nienhaus, K., Lamb, D.C., Deng, P., Nienhaus, G.U.: The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys. J. 82, 1059–1067 (2002)

    Google Scholar 

  55. Young, R.D., Frauenfelder, H., Johnson, J.B., Lamb, D.C., Nienhaus, G.U., Phillip, R., Scholl, R.: Time- and temperature dependence of large-scale conformational transitions in myoglobin. Chem. Phys. 158, 315–328 (1991)

    Article  Google Scholar 

  56. Johnson, J.B., Lamb, D.C., Frauenfelder, H., Müller, J.D., McMahon, B., Nienhaus, G.U., Young, R.D.: Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin. Biophys. J. 71, 1563–1573 (1996)

    Article  ADS  Google Scholar 

  57. Parak, F., Heidemeier, J., Nienhaus, G.U.: Protein structural dynamics as determined by Mössbauer spectroscopy. Hyperfine Interact. 40, 147–158 (1988)

    Article  ADS  Google Scholar 

  58. Chu, K., Ernst, R.M., Frauenfelder, H., Mourant, J.R., Nienhaus, G.U., Philipp, R.: Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610 (1995)

    Article  ADS  Google Scholar 

  59. Berendzen, J., Braunstein, D.: Temperature-derivative spectroscopy: a tool for protein dynamics. Proc. Natl. Acad. Sci. U. S. A. 87, 1–5 (1990)

    Article  ADS  Google Scholar 

  60. Mourant, J.R., Braunstein, D.P., Chu, K., Frauenfelder, H., Nienhaus, G.U., Ormos, P., Young, R.D.: Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin. Biophys. J. 65, 1496–1507 (1993)

    Google Scholar 

  61. Ehrenstein, D., Nienhaus, G.U.: Conformational substates in azurin. Proc. Natl. Acad. Sci. U. S. A. 89, 9681–9685 (1992)

    Article  ADS  Google Scholar 

  62. Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M., Nienhaus, G.U.: Structural dynamics of myoglobin: ligand migration among protein cavities studied by Fourier transform infrared/temperature derivative spectroscopy. J. Biol. Chem. 277, 11636–11644 (2002)

    Article  Google Scholar 

  63. Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U.: Structural dynamics controls nitric oxide affinity in nitrophorin 4. J. Biol. Chem. 279, 39401–39407 (2004)

    Article  Google Scholar 

  64. Phillips Jr., G.N., Teodoro, M.L., Li, T., Smith, B., Olson, J.S.: Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin. J. Phys. Chem. B 103, 8817–8829 (1999)

    Article  Google Scholar 

  65. Ray, G.B., Li, X.-Y., Ibers, J.A., Sessler, J.L., Spiro, G.S.: How far can proteins bend the FeCO unit? Distal polar and steric effects in heme proteins and models. J. Am. Chem. Soc. 116, 162–176 (1994)

    Article  Google Scholar 

  66. Vogel, K.M., Kozlowski, P.M., Zgierski, M.Z., Spiro, T.G.: Determinants of the FeXO (X = C, N, O) vibrational frequencies in heme adducts from experiment and density functional theory. J. Am. Chem. Soc. 121, 9915–9921 (1999)

    Article  Google Scholar 

  67. Müller, J.D., McMahon, B.H., Chien, E.Y., Sligar, S.G., Nienhaus, G.U.: Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys. J. 77, 1036–1051 (1999)

    Google Scholar 

  68. Nienhaus, K., Nienhaus, G.U.: A spectroscopic study of structural heterogeneity and carbon monoxide binding in neuroglobin. J. Biol. Phys. 31, 417–432 (2005)

    Article  Google Scholar 

  69. Bredenbeck, J., Helbing, J., Nienhaus, K., Nienhaus, G.U., Hamm, P.: Multidimensional ultrafast spectroscopy special feature: Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 104, 14243–14248 (2007)

    Article  ADS  Google Scholar 

  70. Campbell, B.F., Chance, M.R., Friedman, J.M.: Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science 238, 373–376 (1987)

    Article  ADS  Google Scholar 

  71. Ormos, P., Szaraz, S., Cupane, A., Nienhaus, G.U.: Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study. Proc. Natl. Acad. Sci. U. S. A. 95, 6762–6767 (1998)

    Article  ADS  Google Scholar 

  72. Brucker, E.A., Olson, J.S., Ikeda-Saito, M., Phillips Jr., G.N.: Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 30, 352–356 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Nienhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienhaus, K., Nienhaus, G.U. Influence of Distal Residue B10 on CO Dynamics in Myoglobin and Neuroglobin. J Biol Phys 33, 357–370 (2007). https://doi.org/10.1007/s10867-008-9059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9059-2

Keywords

Navigation