Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)
ADS
Article
Google Scholar
Nunez, P.L.: The brain wave function: a model for the EEG. Math. Biosci. 21, 279–297 (1974)
MATH
Article
Google Scholar
Freeman, W.J.: Predictions on neocortical dynamics derived from studies in paleocortex. In: Basar, E., Bullock, T.H. (eds.) Induced Rhythms of the Brain, chap. 9, pp. 183–199. Birkhaeuser, Boston (1992)
Google Scholar
Wright, J.J., Liley, D.T.J.: Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav. Brain Sci. 19, 285–316 (1996)
Article
Google Scholar
Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)
Article
ADS
Google Scholar
Liley, D.T.J., Cadusch, P.J., Wright, J.J.: A continuum theory of electro-cortical activity. Neurocomputers 26–27, 795–800 (1999)
Article
Google Scholar
Rennie, C.J., Wright, J.J., Robinson, P.A.: Mechanisms for cortical electrical activity and emergence of gamma rhythm. J. Theor. Biol. 205, 17–35 (2000)
Article
Google Scholar
Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Modelling general anaesthesia as a first-order phase transition in the cortex. Prog. Biophys. Mol. Biol. 85, 369–385 (2004)
Article
Google Scholar
Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network 14, 351–368 (2003)
Article
Google Scholar
Kramer, M.A., Kirsch, H.E., Szeri, A.J.: Pathological pattern formation and epileptic seizures. J. R. Soc. Lond. Interface 2, 113 (2005)
Article
Google Scholar
Chizhov, A.V., Graham, L.J., Turbin, A.A.: Simulation of neural population dynamics with a refractory density approach and a conductance-based threshold neuron model. Neurocomputing 70(1–3), 252–262 (2006)
Article
Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002)
Google Scholar
Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003)
Article
Google Scholar
Hill, S., Tononi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005)
Article
Google Scholar
Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W.: Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28, S74–S79 (2003)
Article
Google Scholar
Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021,903 (2001)
Google Scholar
Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P.: The k-complex and slow oscillation in terms of a mean-field cortical model. J. Comput. Neurosci. 21, 243–257 (2006)
Article
MathSciNet
Google Scholar
Bojak, I., Liley, D.T.J.: Modelling the effects of anaesthesia on the electroencephalogram. Phys. Rev. E 71, 41902 (2005)
Article
ADS
Google Scholar
Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Phys. Rev. E 72, 051910 1–14 (2005)
Article
ADS
MathSciNet
Google Scholar
Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interation in visual cortex. J. Neurosci. 2, 32–48 (1982)
Google Scholar
Bienenstock, E., Lehmann, D.: Regulated criticality in the brain? Adv. Complex Systems 1, 361–384 (1998)
Article
Google Scholar
Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14, 789–802 (2003)
Article
ADS
Google Scholar
Mongillo, G., Amit, D.J., Brunel, N.: Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. Eur. J. Neurosci. 18, 2011–2024 (2003)
Article
Google Scholar
Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)
Google Scholar
Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Wilson, M.T., Wilcocks, L.C.: A mechanism for learning and memory erasure in a white-noise driven sleeping cortex. Phys. Rev. E 72, 061,910 (2005)
Article
MathSciNet
Google Scholar
Stetter, M.: Dynamic functional tuning of nonlinear cortical networks. Phys. Rev. E 73, 031903 (2006)
Article
ADS
MathSciNet
Google Scholar
Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. J. Biophys. 31, 547–569 (2005)
Google Scholar
Tononi, G., Cirelli, C.: Sleep function and synaptic homeostatis. Sleep Med. Rev. 10, 49–62 (2006)
Article
Google Scholar
Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)
Article
Google Scholar
Sejnowski, T.J.: Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303–321 (1977)
Article
Google Scholar
Douglas, R.J., Martin, K.A.: Recurrent neuronal circuits in the neocortex. Curr. Biol. 17(13), R496 (2007)
Article
Google Scholar
Thomson, A.M., Bannister, A.P.: Interlaminar connections in the neocortex. Cerebral Cortex 13, 5–14 (2003)
Article
Google Scholar
Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4, 31 (2003)
Article
Google Scholar
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)
Article
ADS
Google Scholar
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastc Differential Equations. Springer, Berlin (1992)
Google Scholar
Rudolph, M., Pospischil, M., Timofeev, I., Destexhe, A.: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27(20), 5280–5290 (2007)
Article
Google Scholar
Blumenfeld, B., Preminger, S., Sagi, D.: Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52, 383–394 (2006)
Article
Google Scholar
Hopfield, J.J.: Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. U. S. A. 78, 2554–2558 (1982)
Article
ADS
MathSciNet
Google Scholar
Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two state neurons. Proc. Natl. Acad. Sci. U. S. A. 81, 3088–3092 (1984)
Article
ADS
Google Scholar
Abraham, W.C., Robins, A.: Memory retention—the synaptic stability versus plasticity dilemma. Trends Neurosci. 28(2), 73–78 (2005)
Article
Google Scholar
Horn, D., Levy, N., Ruppin, E.: Memory maintenance via neuronal regulation. Neural Comput. 10, 1–18 (1998)
Article
Google Scholar
Pantic, L., Torres, J.J., Kappen, H.J., Gielen, S.C.A.M.: Associate memory with dynamic synapses. Neural Comput. 14, 2903–2923 (2002)
MATH
Article
Google Scholar
Steriade, M., Núnez, A., Amzica, F.: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993)
Google Scholar
Crochet, S., Chauvette, S., Boucetta, S., Timofeev, I.: Modulation of synaptic transmission in neocortex by network activities. Eur. J. Neurosci. 21, 1030–1044 (2005)
Article
Google Scholar
Massimini, M., Rosanova, M., Mariotti, M.: EEG slow (∼1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J. Neurophysiol. 89, 1205–1213 (2003)
Article
Google Scholar
Steriade, M., Timofeev, I., Grenier, F.: Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)
Google Scholar
Battaglia, F.P., Sutherland, G.R., McNaughton, B.L.: Hippocampal sharp wave bursts conincide with neocortical “up-state” transitions. Learn. Mem. 11, 697–704 (2004)
Article
Google Scholar
Marshall, L., Helgadóttir, H., Mölle, M., Born, J.: Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006)
Article
ADS
Google Scholar