Skip to main content
Log in

Kinesin as an Electrostatic Machine

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive and directional fashion. We show that the observed step-like motion is possible through time-varying charge distributions furnished by the ATP hydrolysis cycle while the static charge configuration on the microtubule provides the guide for motion. Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin and the microtubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tuszynski, J.A., Luchko, T., Carpenter, E.J., Crawford, E.: Electrostatic properties of tubulin and their consequences for microtubules. J. Comput. Theor. Nanosci. 1, 1–6 (2005)

    Google Scholar 

  2. Thormählen, M., Marx, A., Müller, S.A., Song, Y.H., Mandelkow, E.M., Aebi, U., Mandelkow, E.: Interaction of monomeric and dimeric kinesin with microtubules. J. Mol. Biol. 275, 795–809 (1998)

    Article  Google Scholar 

  3. Endow, S.A., Higuchi, H.: A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000)

    Article  ADS  Google Scholar 

  4. Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)

    Article  ADS  Google Scholar 

  5. Kasprzak, A.A., Hajdo, A.: Directionality of kinesin motors. Acta Biochim. Pol. 49(4), 813–821 (2002)

    Google Scholar 

  6. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  ADS  Google Scholar 

  7. Kozielski, F., Sack, S., Marx, A., Thormählen, M., Schönbrunn, E., Biou, V., Thompson, A., Mandelkow, E.M., Mandelkow, E.: The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997)

    Article  Google Scholar 

  8. Cross, R.A.: The kinetic mechanism of kinesin. Trends Biochem. Sci. 29(6), 301–309 (2004)

    Article  Google Scholar 

  9. Ray, S., Meyhöfer, E., Milligan, R.A., Howard, J.: Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121(5), 1083–1093 (1993)

    Article  Google Scholar 

  10. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002) (and references therein)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Tsironis, G.P., Lindenberg, K.: Motor proteins have highly correlated Brownian engines. Adv. Struct. Biol. 5, 271–281 (1998)

    Article  Google Scholar 

  12. Stratopoulos, G., Dialynas, T., Tsironis, G.P.: Directional Newtonian motion and reversals of molecular motors. Phys. Lett., A. 252, 151–156 (1999)

    Article  ADS  Google Scholar 

  13. Fisher, M.E., Kolomeisky, A.B.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98, 7748–7753 (2001)

    Article  ADS  Google Scholar 

  14. Bier, M.: Processive motor protein as an overdamped Brownian stepper. Phys. Rev. Lett. 91(14), 148104 (2003)

    Article  ADS  Google Scholar 

  15. Ciudad, A., Lacasta, A.M., Sancho, J.M.: Physical analysis of a processive molecular motor: the conventional kinesin. Phys. Rev., E. 72, 31918 (2005)

    Article  ADS  Google Scholar 

  16. Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997)

    Article  ADS  Google Scholar 

  17. Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors KIF1A. Phys. Rev. Lett. 95, 118101 (2005)

    Article  ADS  Google Scholar 

  18. Levin, Y.: Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65, 1577–1632 (2002)

    Article  ADS  Google Scholar 

  19. Thorn, K.S., Ubersax, J.A., Vale, R.D.: Engineering the processive run length of the kinesin motor. J. Cell Biol. 151(5), 1093–1100 (2000)

    Article  Google Scholar 

  20. Ciudad, A., Sancho, J.M.: External mechanical force as an inhibition process in kinesin’s motion. Biochem. J. 390, 345–349 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ciudad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciudad, A., Sancho, J.M. & Tsironis, G.P. Kinesin as an Electrostatic Machine. J Biol Phys 32, 455–463 (2006). https://doi.org/10.1007/s10867-006-9028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9028-6

Key words

Navigation