Skip to main content
Log in

Quantum Information Processing in the Wall of Cytoskeletal Microtubules

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Microtubules (MT) are composed of 13 protofilaments, each of which is a series of two-state tubulin dimers. In the MT wall, these dimers can be pictured as “lattice” sites similar to crystal lattices. Based on the pseudo-spin model, two different location states of the mobile electron in each dimer are proposed. Accordingly, the MT wall is described as an anisotropic two-dimensional (2D) pseudo-spin system considering a periodic triangular “lattice”. Because three different “spin-spin” interactions in each cell exist periodically in the whole MT wall, the system may be shown to be an array of three types of two-pseudo-spin-state dimers. For the above-mentioned condition, the processing of quantum information is presented by using the scheme developed by Lloyd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 13–23 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97–117 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Feynman, R.P.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)

    Article  Google Scholar 

  4. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Shahriar, M.S., Bowers, J.A., Demsky, B.: Cavity dark states for quantum computing. Opt. Commun. 195, 411–417 (2001)

    Article  ADS  Google Scholar 

  6. Beznosyuk, S.A.: Modern quantum theory and computer simulation in nanotechnologies: quantum topology approaches to kinematic and dynamic structures of self-assembling processes. Mater. Sci. Eng. C 19, 369–372 (2002)

    Article  Google Scholar 

  7. Medvedev, D.M., Dmitry, M., Goldfield, E.M.: An open MP/ MPI approach to the parallelization of iterative four-atom quantum mechanics. Comput. Phys. Commun. 166, 94–108 (2005)

    Article  ADS  Google Scholar 

  8. Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)

    Article  ADS  Google Scholar 

  9. Davies, P.C.W.: Does quantum mechanics play a non-trivial role in life? Biosystems 78, 69–79 (2004)

    Article  Google Scholar 

  10. Patel, A.: Quantum algorithms and the genetic code. Pramana 56, 367–381 (2001)

    ADS  Google Scholar 

  11. Bashford, J.D., Tsohantjis, I., Jarvis, P.D.: A supersymmetric model for the evolution of the genetic code. Biochemistry 95, 987–992 (1998)

    Google Scholar 

  12. Silverman, G.J., Cary, S., Aguilar, S., Dwyer, D.: A B-cell superantigen induced persistent “hole” in the B-1 repertoire. J. Exp. Med. 192, 87–98 (2000)

    Article  Google Scholar 

  13. Hameroff, S.R., Penrose, R.: Conscious events as orchestrated space-time selections. J. Conscious. Stud. 3, 36–53 (1996)

    Google Scholar 

  14. Woolf, N.J., Hameroff, S.R.: A quantum approach to visual consciousness. Trends Cogn. Sci. 5, 472–478 (2001)

    Article  Google Scholar 

  15. Nogales, E.S., Wolf, G., Downing, K.H.: Structure of the tubulin dimer by electron crystallography. Nature 391, 199–203 (1998)

    Article  ADS  Google Scholar 

  16. Nogales, E.S., Downing, K.H., Amos, L.A., Lowe, J.: Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451–458 (1998)

    Article  Google Scholar 

  17. Nogales, E.S., Whittaker, M., Milligan, R.A., Downing, K.H.: High-resolution model of the microtubule. Cell 96, 79–88 (1999)

    Article  Google Scholar 

  18. Löwe, J., Li, H., Downing, K.H., Nogales, E.: Refined structure of ab-tubulin at 3.5 Å. J. Mol. Biol. 313, 1045–1057 (2001)

    Article  Google Scholar 

  19. Hud, N.V., Downing, K.H.: Cryoelectron microscopy of l phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc. Natl. Acad. Sci. U.S.A. 98, 14925–14930 (2001)

    Article  ADS  Google Scholar 

  20. Zhong, S., Dadarlat, V.M., Glaeser, R.M., Head-Gordon, T., Downing, K.H.: Modeling chemical bonding effects for protein electron crystallography: the transferable fragmental electrostatic potential (TFESP) method. Acta Cryst. A 58, 162–170 (2002)

    Article  Google Scholar 

  21. Amos, L.A., Klug, A.: Arrangement of subunits in flagellar microtubules. J. Cell Sci. 14, 523–549 (1974)

    Google Scholar 

  22. Engelborghs, Y., Audenaert, A., Heremans, L., Heremans, K.: Secondary structure analysis of tubulin and microtubules with Raman spectroscopy. Biochim. Biophys. Acta 996, 110–115 (1989)

    Google Scholar 

  23. Tuszynski, J.A., Hameroff, S.H., Sataric, M.V., Trpisova, B., Nip, M.L.A.: Ferroelectric behaviour in microtubule dipole lattices: implications for information processing, signalling and assembly/disassembly. J. Theor. Biol. 174, 371–380 (1995)

    Article  Google Scholar 

  24. Mavromatos, N.E., Nanopoulos, D.V.: On quantum mechanical aspects of microtubules. Int. J. Mod. Phys. B 12, 517–542 (1998)

    Article  ADS  Google Scholar 

  25. Mavromatos, N.E., Mershin, A., Nanopoulos, D.V.: QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation. Int. J. Mod. Phys. B 16, 3623–3642 (2002)

    Article  ADS  Google Scholar 

  26. Satarć, M.V., Tuszyński, J.A., Žakula, R.B.: Kinklike excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E 48, 589–597 (1993)

    Article  ADS  Google Scholar 

  27. Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K.H., Yasue, K.: Quantum optical coherence in cytoskeletal microtubules: implications for brain function. Biosystems 32, 195–209 (1994)

    Article  Google Scholar 

  28. Chen, Y., Qiu, X.J.: Collective radiation of water in cyto skeletal microtubule. Acta Phys. Sin. 52, 1554–1560 (2003)

    Google Scholar 

  29. Sataric, M.V., Koruga D., Ivic, Z., Zakula, R.: The detachment of dimers in the tube of microtubulin as a result of a solitonic mechanism. J. Mol. Electron. 6, 63–69 (1990)

    Google Scholar 

  30. Collins, M.A., Blumen, A., Currie, J.F., Ross, J.: Dynamics of domain walls in ferrodistortive materials. I. Theory. Phys. Rev. B 19, 3630–3644 (1979)

    Article  ADS  Google Scholar 

  31. Chen, Y., Qiu, X.J., Dong, X.L.: A theory for cell microtubule wall in external field and pseudo–spin wave excitation. Physica, A (2006) (in press)

  32. Haken, H.: Quantum Field Theory of Solids – An Introduction. North-Holland, New York (1976)

    Google Scholar 

  33. Hall, J.L., Ye, J., Diddams, S.A., Ma, L.-S., Cundiff, S. T., Jones D.J.: Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology. IEEE J. Quantum Electron. 37, 1482–1492 (2001)

    Article  ADS  Google Scholar 

  34. Pokorny, J., Jelnek, F., Trkal, V.: Electric field around microtubules. Bioelectroch. Bioener. 45, 239–245 (1998)

    Article  Google Scholar 

  35. Fröhlich, H.: Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 2, 641–649 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Qiu, X., Wu, T. et al. Quantum Information Processing in the Wall of Cytoskeletal Microtubules. J Biol Phys 32, 413–420 (2006). https://doi.org/10.1007/s10867-006-9025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9025-9

Key words

Navigation