Skip to main content
Log in

Landscape Excitation Profiles and Excess Thermodynamic Properties of Disaccharide Aqueous Solutions

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We will consider the use of the bond model in characterizing, by the direct calculation route, the full excitation profile. The present work sets the temperature behaviour of the excessive value of some thermodynamic quantities, such as configurational entropy and heat capacity of two homologous disaccharide aqueous solutions. The findings represent important data for understanding the better lyoprotectant effectiveness of trehalose in comparison with sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, L., Blanco, I., Branca, C. Magazù, S., Maisano, G., Migliardo, F., Mineo, P.G. and Romeo, G.: Homologous Disaccharide Properties at Low Temperatures, J. Mol. Liquids 103–104 (2003) 177–180.

    Article  Google Scholar 

  2. Magazù, S., Branca, C., Faraone, A., Migliardo, F., Migliardo, P. and Romeo, G.: Comparison of Disaccharide Solutions Across Glass Transition, Physica B 301 (2001) 126–129.

    Article  ADS  Google Scholar 

  3. Crowe, J.H., Crowe, L.M., and Jackson, S.A.: Preservation of Structural and Functional Activity in Lyophilized Sarcoplasmic Reticulum, Arch. Biochem. Biophys. 220 (1983), 477–484.

    Article  Google Scholar 

  4. Crowe, L. M., Reid, D. S., and Crowe, J. H.: Is Trehalose Special for Preserving Dry Biomaterials?, Biophysical Journal 71 (1996) 2087–2093.

    Article  Google Scholar 

  5. Green, J.L., and Angell, C.A.: Phase Relations and Vitrification in Saccharide-Water Solutions and the Trehalose Anomaly, J. Phys. Chem. B 93 (1989) 2880–2882.

    Article  Google Scholar 

  6. Crowe, J.H., and Crowe, L.M., in D. Chapman (Ed.): Biological Membranes. Academic Press, New York, (1984) 57–103.

  7. Stillinger, F. H.: Exponential Multiplicity of Inherent Structures, Phys. Rev. E 59 (1999) 48–51.

    Article  ADS  Google Scholar 

  8. Buchner, S., and Heuer, A.: Potential Energy Landscape of a Model Glass Former: Thermodynamics, Anharmonicities, and Finite Size Effects, Phys. Rev. E 60 (1999) 6507–6518.

    Article  ADS  Google Scholar 

  9. Angell, C. A.: Perspective on the Glass Transition, J. Phys. Chem. Solids 49 (1988) 863–871.

    Article  ADS  Google Scholar 

  10. Bée, M.: Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Material Science. Adam Hilger, Bristol, UK, 1988.

    Google Scholar 

  11. Angell, C.A., Richards, B. E. and Velikov, V.: Simple Glass-Forming Liquids: Their Definition, Fragilities, and Landscape Excitation Profiles, J. Phys. Condens. Matter 11 (1999) A75–A94.

    Article  ADS  Google Scholar 

  12. Branca, C., Faraone, A., Magazù, S., Maisano, G., Migliardo, F., Migliardo, P. and Villari, V.: Structural and Dynamical Properties of Trehalose-Water Solutions: Anomalous Behaviour and Molecular Models, Rec. Res. Develop. Phys. Chem. 3 (1999) 361–403.

    Google Scholar 

  13. Magazù, S., Migliardo, F., Mondelli, C., and Romeo, G.: Inspection of the Glassy Mixtures Elastic Intensity by IN13, Physica Scripta, 71 (2005) 409–413.

    Article  ADS  Google Scholar 

  14. Van Damme, H., and Fripiat, J.J.: On the Angell–Rao Transport Equation for Glass-Forming Systems, J. Chem. Phys. 62 (1975) 3365–3366.

    Article  ADS  Google Scholar 

  15. Doster, W., Cusack, S., Petry, W.: Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering, Nature 337 (1989) 754–756.

    Article  ADS  Google Scholar 

  16. Magazù, S., Migliardo, F., Mondelli, C., Romeo, G.: Temperature Dependance of Mean Square Displacement by IN13: A Comparison Between Trehalose and Sucrose Water Mixtures, Chem. Phys. 292 (2003) 247–251.

    Article  Google Scholar 

  17. Angell, C. A., and Rao, K. J.: Configurational Excitations in Condensed Matter, and the “Bond Lattice” Model for the Liquid-Glass Transition, J. Chem. Phys. 57 (1972) 470–481.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magazù, S., Mondelli, C. & Romeo, G. Landscape Excitation Profiles and Excess Thermodynamic Properties of Disaccharide Aqueous Solutions. J Biol Phys 32, 145–151 (2006). https://doi.org/10.1007/s10867-006-9009-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9009-9

Key words

Navigation