Journal of Biological Physics

, Volume 31, Issue 3–4, pp 303–321 | Cite as

Model of DNA Dynamics and Replication

  • Leif MatssonEmail author


Before DNA replication can be initiated a definite number of adenosine triphosphate (ATP) containing pre-replication protein complexes (pre-RCs) must be assembled and bound to DNA like in a super-critical mass. A chemically driven dynamics of the Ginzburg-Landau (GL) type is derived, using the non-equilibrium equation for binding of pre-RCs to DNA and a probabilistic conformational distribution of these protein complexes. This dynamics, in which the DNA-protein system behaves like a nonlinear elastically braced string (NEBS), can control the cell cycle via conformational transitions such that G2 cells contain exactly twice as much DNA as G1 cells. After adjustment of previously-made derivations, the model is compared with cell growth data from the T lymphocyte MLA-144.

Key words

DNA replication cell cycle regulation DNA dynamics commitment initiation termination DNA condensation DNA conformation DNA folding DNA compaction DNA packing pre-replication complex initiator protein assembly origin recognition non-equilibrium dynamics Ginzburg-Landau model elastically braced string reaction coordinate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kelly, T.J. and Brown, G.W.: Regulation of Chromosome Replication, Annu. Rev. Biochem. 69 (2000), 829–880.CrossRefGoogle Scholar
  2. Sherr, C.J.: The Pezcoller Lecture: Cancer Cell Cycles Revisited, Cancer Res. 60 (2000), 3689–3695.Google Scholar
  3. Matsson, L.: DNA Replication and Cell Cycle Progression Regulated by Long Range Interaction between Protein Complexes Bound to DNA, J. Biol. Phys. 27 (2001), 329–359.CrossRefGoogle Scholar
  4. Smith, K.A.: The Interleukin-2 Receptor, Annu. Rev. Cell Biol. 5 (1989), 157–173.CrossRefGoogle Scholar
  5. Cantrell, C.A. and Smith, K.A.: The Interleukin-2 T-Cell System: A New Cell Growth Model, Science 224 (1984), 1312–1316.ADSGoogle Scholar
  6. Dyson, N.: The Regulation of E2F by pRB-Family Proteins, Genes & Dev. 12 (1998), 2245–2262.Google Scholar
  7. Harbour, J.W. and Dean, D.C.: The Rb/E2F Pathway: Expanding Roles and Emerging Paradigms, Genes & Dev. 14 (2000), 2393–2409.Google Scholar
  8. Helin, K.: Regulation of Cell Proliferation by the E2F Transcription Factors, Curr. Opin. Gen. & Dev. 8 (1998), 28–35.Google Scholar
  9. Dutta, A. and Bell, S.P.: Initiation of DNA Replication in Eukaryotic Cells, Annu. Rev. Cell Dev. Biol. 13 (1997), 293–332.CrossRefGoogle Scholar
  10. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P.: Molecular Biology of the Cell, Garland Sci., New York 2002, p. 1006.Google Scholar
  11. Bell, S.P. and Stillman, B.: ATP-Dependent Recognition of Eukaryotic Origins of DNA Replication by a Multiprotein Complex, Nature 357 (1992), 128–134.ADSGoogle Scholar
  12. Doi, M. and Edwards, S.F.: The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.Google Scholar
  13. Wartell, R.M. and Benight, A.S.: Thermal Denaturation of DNA Molecules: A Comparison of Theory with Experiment, Phys. Rep. 126 (1985), 67–107.CrossRefADSGoogle Scholar
  14. Jackiw, R.: Quantum Meaning of Classical Field Theory, Rev. Mod. Pys. 49 (1977), 681–706.ADSMathSciNetGoogle Scholar
  15. Matsson, L., Sa-yakanit, V. and Boribarn, S.: Lyotropic Ion Channel Current Model Compared with Ising Model, J. Biol. Phys. 31 (2005) 525–532.Google Scholar
  16. Morse, P. and Feshbach, H.: Methods of Mathematical Physics Part I, McGraw-Hill, New-York, 1953.Google Scholar
  17. Matsson, L.: Response Theory for Non-Stationary Ligand-Receptor Interaction and a Solution to the Growth Signal Firing Problem, J. Theor. Biol. 180 (1996), 93–104.CrossRefGoogle Scholar
  18. Grosberg, A.Y. and Khokhlov, A.R.: Statistical Physics of Macromolecules, AIP, New York, 1994.Google Scholar
  19. Case, R.B., Chang, Y.-P., Smith, S.B., Gore, J., Cozzarelli, N.R. and Bustamante, C.: The Bacterial Condensin MukBEF Compacts DNA into a Repetitive, Stable Structure, Science 305 (2004), 222–227.CrossRefADSGoogle Scholar
  20. Matsson, L.: Long Range Interaction between Protein Complexes in DNA Controls Replication and Cell Cycle Progression, J. Biol. Syst. 9 (2001), 41–65.Google Scholar
  21. Bustamante, C., Marko, J.F., Siggia, E.D. and Smith, S.B.: Entropic Elasticity of λ -Phage DNA, Science 265 (1994), 1599–1600.ADSGoogle Scholar
  22. Wiegel, F.W.: Introduction to Path-Integral Methods in Physics and Polymer Science, World Scientific, Singapore, 1986.Google Scholar
  23. Poland, D. and Scheraga, H.A.: Occurrence of a Phase Transition in Nucleic Acid Model, J. Chem. Phys. 45 (1966), 1456–1463.Google Scholar
  24. Poland, D. and Scheraga, H.A.: Phase Transitions in One Dimension and the Helix-Coil Transition in Polyamino Acids, J. Chem. Phys. 45 (1966), 1464–1469.Google Scholar
  25. Fischer, M.E.: Effect of Excluded Volume on Phase Transitions in Biopolymers, J. Chem. Phys. 45 (1966), 1469–1473.Google Scholar
  26. Peyrard, M. and Bishop, A.R.: Statistical Mechanics of a Nonlinear Model for DNA Denaturation, Phys. Rev. Lett. 62 (1989), 2755–2758.CrossRefADSGoogle Scholar
  27. Frauenfelder, H., Wolynes, P.G. and Austin, R.H.: Biological Physics, Rev. Mod. Phys. 71 (1999), S419–S430.CrossRefGoogle Scholar
  28. Smith, K.A.: Determining to Divide: How do Cells Decide? J. Biol. Phys. 31 (2005), 261–272.Google Scholar
  29. Ekholm-Reed, S., Mendez, J., Tedesco, D., Zetterberg, A., Stillman, B. and Reed, S.I.: Deregulation of Cyclin E in Human Cells Interferes with Prereplication Complex Assembly, J. Cell. Biol. 165 (2004), 789–800.CrossRefGoogle Scholar
  30. Matsson, L.: Soliton Growth-Signal Transduction in Topologically Quantized T Cells, Phys. Rev. E 48 (1993), 2217–2231.Google Scholar
  31. Kramers, H.A.: Statistics of the Two-Dimensional Ferromagnet. Part I, Phys. Rev. 60 (1941), 252–262.ADSzbMATHMathSciNetGoogle Scholar
  32. Jarzynski, C.: Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett. 78 (1997), 2690–2693.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physics, Condensed Matter Theory DivisionGöteborg UniversityGöteborgSweden

Personalised recommendations