Advertisement

Role of delay discounting in predicting change in HBA1c for individuals with prediabetes

  • Leonard H. EpsteinEmail author
  • Rocco A. Paluch
  • Jeff S. Stein
  • Alexandra M. Mellis
  • Teresa Quattrin
  • Lucy D. Mastrandrea
  • Kyle A. Bree
  • Mark H. Greenawald
  • Warren K. Bickel
Article
  • 111 Downloads

Abstract

The majority of people with prediabetes transition to type 2 diabetes. Weight gain is a known predictor of increasing the risk of diabetes, but another reason may be a focus on immediate rewards and discounting of the future. Delay discounting (DD: devaluation of future consequences) is related to obesity and poor glycemic control in persons with type 2 diabetes. This study was designed to assess whether changes in DD are associated with HbA1c change beyond BMI change in individuals with prediabetes. Hierarchical regression showed changes in BMI (p = 0.008) and the $1000 DD task (p = 0.04) were associated with HbA1c change beyond demographic characteristics, with the full model accounting for 25.8% of the variance. Those with greater BMI increases and greater increases in discounting of the future showed the greatest increases in HbA1c. DD represents a novel target to prevent progression from prediabetes to type 2 diabetes.

Keywords

Delay discounting Prediabetes Glycemic control 

Notes

Funding

This research was funded in part by the National Institutes of Health (NIH) Science of Behavior Change Common Fund Program through an award administered by the National Institute of Diabetes and Digestive and Kidney Diseases (1UH2DK109543), awarded to Drs. Epstein and Bickel.

Compliance with ethical standards

Conflict of interest

Dr. Epstein was a consultant and had equity in Daltri when the study was implemented. Dr. Bickel is a consultant or has equity in HealthSim LLC, NotifiUs LLC, Sober Grid Inc., DxRx, Prophase LLC, Teva Branded Pharmaceuticals, General Genetic Corporation. The authors Paluch, Stein, Mellis, Quattrin, Mastrandrea, Bree and Greenawald do not declare any conflict of interest with respect to the authorship or publication of this article.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institution and with the 1964 Helsinki declaration and its later amendment of comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

References

  1. Agardh, E., Allebeck, P., Hallqvist, J., Moradi, T., & Sidorchuk, A. (2011). Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. International Journal of Epidemiology, 40, 804–818.  https://doi.org/10.1093/ije/dyr029 CrossRefGoogle Scholar
  2. Amlung, M., Petker, T., Jackson, J., Balodis, I., & MacKillop, J. (2016). Steep discounting of delayed monetary and food rewards in obesity: A meta-analysis. Psychological Medicine, 46, 2423–2434.  https://doi.org/10.1017/S0033291716000866 CrossRefGoogle Scholar
  3. Bernard, C. (1927). An introduction to the study of experimental medicine. North Chelmsford, MA: Courier Corporation.Google Scholar
  4. Bickel, W. K., & Marsch, L. A. (2001). Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction, 96, 73–86.CrossRefGoogle Scholar
  5. Bode, B. W., Irvin, B. R., Pierce, J. A., Allen, M., & Clark, A. L. (2007). Advances in hemoglobin A1C point of care technology. Journal of Diabetes Science and Technology, 1, 405–411.CrossRefGoogle Scholar
  6. Bradford, W. D. (2010). The association between individual time preferences and health maintenance habits. Medical Decision Making, 30, 99–112.  https://doi.org/10.1177/0272989X09342276 CrossRefGoogle Scholar
  7. Colditz, G. A., Willett, W. C., Rotnitzky, A., & Manson, J. E. (1995). Weight-gain as a risk factor for clinical diabetes-mellitus in women. Annals of Internal Medicine, 122, 481–486.  https://doi.org/10.7326/0003-4819-122-7-199504010-00001 CrossRefGoogle Scholar
  8. Daniel, T. O., Sawyer, A., Dong, Y. L., Bickel, W. K., & Epstein, L. H. (2016). Remembering versus imagining: When does episodic retrospection and episodic prospection aid decision making? Journal of Applied Research in Memory and Cognition, 5, 352–358.CrossRefGoogle Scholar
  9. Daniel, T. O., Stanton, C. M., & Epstein, L. H. (2013a). The future is now: Comparing the effect of episodic future thinking on impulsivity in lean and obese individuals. Appetite, 71, 120–125.  https://doi.org/10.1016/j.appet.2013.07.010 CrossRefGoogle Scholar
  10. Daniel, T. O., Stanton, C. M., & Epstein, L. H. (2013b). The future is now: Reducing impulsivity and energy intake using episodic future thinking. Psychological Science, 24, 2339–2342.  https://doi.org/10.1177/0956797613488780 CrossRefGoogle Scholar
  11. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.  https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefGoogle Scholar
  12. Du, W. J., Green, L., & Myerson, J. (2002). Cross-cultural comparisons of discounting delayed and probabilistic rewards. Psychological Record, 52, 479–492.CrossRefGoogle Scholar
  13. Dybjer, E., Nilsson, P. M., Engstrom, G., Helmer, C., & Nagga, K. (2018). Pre-diabetes and diabetes are independently associated with adverse cognitive test results: A cross-sectional, population-based study. Bmc Endocrine Disorders.  https://doi.org/10.1186/s12902-018-0318-3 Google Scholar
  14. Epstein, L. H., Leddy, J. J., Temple, J. L., & Faith, M. S. (2007). Food reinforcement and eating: A multilevel analysis. Psychological Bulletin, 133, 884–906.  https://doi.org/10.1037/0033-2909.133.5.884 CrossRefGoogle Scholar
  15. Epstein, L. H., & Saelens, B. E. (2000). Behavioral economics of obesity: Food intake and energy expenditure. In W. K. Bickel & R. E. Vuchinich (Eds.), Reframing health behavior change with behavioral economics (pp. 293–311). Mahwah, N.J: Lawrence Erlbaum.Google Scholar
  16. Geijselaers, S. L. C., Sep, S. J. S., Claessens, D., Schram, M. T., van Boxtel, M. P. J., Henry, R. M. A., et al. (2017). The role of hyperglycemia, insulin resistance, and blood pressure in diabetes-associated differences in dognitive performance—The Maastricht Study. Diabetes Care, 40, 1537–1547.  https://doi.org/10.2337/dc17-0330 CrossRefGoogle Scholar
  17. Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130, 769–792.CrossRefGoogle Scholar
  18. Hainer, V., Toplak, H., & Stich, V. (2009). Fat or fit: What is more important? Diabetes Care, 32, S392–S397.  https://doi.org/10.2337/dc09-S346 CrossRefGoogle Scholar
  19. Hayes, A. F. (2013). An introduction to mediation, moderation, and conditional process modeling: A regression-based approach. New York, NY: Guilford Press.Google Scholar
  20. Hendrickson, K. L., & Rasmussen, E. B. (2013). Effects of mindful eating training on delay and probability discounting for food and money in obese and healthy-weight individuals. Behaviour Research and Therapy, 51, 399–409.  https://doi.org/10.1016/j.brat.2013.04.002 CrossRefGoogle Scholar
  21. Hollis-Hansen, K., Seidman, J., O’Donnell, S., & Epstein, L. H. (2019). Episodic future thinking and grocery shopping online. Appetite, 133, 1–9.CrossRefGoogle Scholar
  22. Jaroni, J. L., Wright, S. M., Lerman, C., & Epstein, L. H. (2004). Relationship between education and delay discounting in smokers. Addictive Behaviors, 29, 1171–1175.CrossRefGoogle Scholar
  23. Johnson, M. W., & Bickel, W. K. (2002). Within-subject comparison of real and hypothetical money rewards in delay discounting. Journal of the Experimental Analysis of Behavior, 77, 129–146.  https://doi.org/10.1901/jeab.2002.77-129 CrossRefGoogle Scholar
  24. Johnson, M. W., & Bickel, W. K. (2008). An algorithm for identifying nonsystematic delay-discounting data. Experimental and Clinical Psychopharmacology, 16, 264–274.  https://doi.org/10.1037/1064-1297.16.3.264 CrossRefGoogle Scholar
  25. Johnson, M. W., Johnson, P. S., Herrmann, E. S., & Sweeney, M. M. (2015). Delay and probability discounting of sexual and monetary outcomes in individuals with cocaine use disorders and matched controls. PLoS One.  https://doi.org/10.1371/journal.pone.0128641 Google Scholar
  26. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., et al. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346, 393–403.CrossRefGoogle Scholar
  27. Lansing, A. H., Stanger, C., Crochiere, R., Carracher, A., & Budney, A. (2017). Delay discounting and parental monitoring in adolescents with poorly controlled type 1 diabetes. Journal of Behavioral Medicine, 40, 864–874.  https://doi.org/10.1007/s10865-017-9856-9 CrossRefGoogle Scholar
  28. Lebeau, G., Consoli, S. M., Le Bouc, R., Sola-Gazagnes, A., Hartemann, A., Simon, D., et al. (2016). Delay discounting of gains and losses, glycemic control and therapeutic adherence in type 2 diabetes. Behavioural Processes, 132, 42–48.  https://doi.org/10.1016/j.beproc.2016.09.006 CrossRefGoogle Scholar
  29. Ludwig, D. S. (2002). The glycemic index—Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Journal of the American Medical Association, 287, 2414–2423.  https://doi.org/10.1001/jama.287.18.2414 CrossRefGoogle Scholar
  30. Mellis, A. M., Woodford, A. E., Stein, J. S., & Bickel, W. K. (2017). A second type of magnitude effect: Reinforcer magnitude differentiates delay discounting between substance users and controls. Journal of the Experimental Analysis of Behavior, 107, 151–160.  https://doi.org/10.1002/jeab.235 CrossRefGoogle Scholar
  31. Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior, 76, 235–243.  https://doi.org/10.1901/jeab.2001.76-235 CrossRefGoogle Scholar
  32. Nichols, G. A., Hillier, T. A., & Brown, J. B. (2007). Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care, 30, 228–233.  https://doi.org/10.2337/dc06-1392 CrossRefGoogle Scholar
  33. O’Neill, J., Daniel, T. O., & Epstein, L. H. (2016). Episodic future thinking reduces eating in a food court. Eating Behaviors, 20, 9–13.  https://doi.org/10.1016/j.eatbeh.2015.10.002 CrossRefGoogle Scholar
  34. Peters, J., & Buchel, C. (2010). Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal–mediotemporal interactions. Neuron, 66, 138–148.  https://doi.org/10.1016/j.neuron.2010.03.026 CrossRefGoogle Scholar
  35. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731.CrossRefGoogle Scholar
  36. Reach, G. (2010). Is there an impatience genotype leading to non-adherence to long-term therapies? Diabetologia, 53, 1562–1567.  https://doi.org/10.1007/s00125-010-1755-3 CrossRefGoogle Scholar
  37. Reach, G., Michault, A., Bihan, H., Paulino, C., Cohen, R., & Le Clesiau, H. (2011). Patients’ impatience is an independent determinant of poor diabetes control. Diabetes & Metabolism, 37, 497–504.  https://doi.org/10.1016/j.diabet.2011.03.004 CrossRefGoogle Scholar
  38. Riddle, M., & Science of Behavior Change Working Group. (2015). News from the NIH: Using an experimental medicine approach to facilitate translational research. Translational Behavioral Medicine, 5, 486–488.  https://doi.org/10.1007/s13142-015-0333-0 CrossRefGoogle Scholar
  39. Schacter, D. L., Benoit, R. G., & Szpunar, K. K. (2017). Episodic future thinking: Mechanisms and functions. Current Opinion in Behavioral Sciences, 17, 41–50.CrossRefGoogle Scholar
  40. Stein, J. S., Wilson, A. G., Koffarnus, M. N., Daniel, T. O., Epstein, L. H., & Bickel, W. K. (2016). Unstuck in time: Episodic future thinking reduces delay discounting and cigarette smoking. Psychopharmacology (Berl), 233, 3771–3778.  https://doi.org/10.1007/s00213-016-4410-y CrossRefGoogle Scholar
  41. Story, G. W., Vlaev, I., Seymour, B., Darzi, A., & Dolan, R. J. (2014). Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Frontiers in Behavioral Neuroscience.  https://doi.org/10.3389/fnbeh.2014.00076 Google Scholar
  42. Sze, Y. Y., Daniel, T. O., Kilanowski, C. K., Collins, R. L., & Epstein, L. H. (2015). Web-based and mobile delivery of an Episodic Future Thinking intervention for overweight and obese families: A feasibility study. JMIR mHealth uHealth, 16, e97.CrossRefGoogle Scholar
  43. Tabak, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimaki, M. (2012). Prediabetes: A high-risk state for diabetes development. Lancet, 379, 2279–2290.  https://doi.org/10.1016/S0140-6736(12)60283-9 CrossRefGoogle Scholar
  44. Vanhanen, M., Koivisto, K., Karjalainen, L., Helkala, E. L., Laakso, M., Soininen, H., et al. (1997). Risk for non-insulin-dependent diabetes in the normoglycaemic elderly is associated with impaired cognitive function. NeuroReport, 8, 1527–1530.  https://doi.org/10.1097/00001756-199704140-00041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leonard H. Epstein
    • 1
    Email author
  • Rocco A. Paluch
    • 1
  • Jeff S. Stein
    • 2
  • Alexandra M. Mellis
    • 2
  • Teresa Quattrin
    • 1
  • Lucy D. Mastrandrea
    • 1
  • Kyle A. Bree
    • 1
  • Mark H. Greenawald
    • 2
  • Warren K. Bickel
    • 2
  1. 1.Department of Pediatrics, Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloUSA
  2. 2.Virginia Tech Carilion Research InstituteRoanokeUSA

Personalised recommendations