Do implicit attitudes toward physical activity and sedentary behavior prospectively predict objective physical activity among persons with obesity?

  • Guillaume Chevance
  • Johan Caudroit
  • Thomas Henry
  • Philippe Guerin
  • Julie Boiché
  • Nelly Héraud
Article

Abstract

This study conducted among adults with obesity examined the associations between implicit attitudes toward physical activity and sedentary behavior, and physical activity behavior measured 4 months later. At baseline, 76 participants (MAGE = 56; MBMI = 39.1) completed a questionnaire assessing intentions toward physical activity and sedentary behavior and two computerized Single-Category Implicit Association Tests assessing implicit attitudes toward these two behaviors. At follow-up, physical activity was measured with accelerometers. Multiple regression analysis showed that implicit attitudes toward physical activity were positively and significantly associated with physical activity when participants’ age, BMI, past physical activity and intentions were controlled for. Implicit attitudes toward sedentary behavior were not associated with physical activity. Adults with obesity who implicitly reported more favorable attitudes toward physical activity at baseline were more likely to present higher physical activity levels at follow-up. Implicit attitudes could be targeted in future research to enhance physical activity.

Keywords

Intentions Dual-processes Unconscious processes Automatic processes Exercise 

Supplementary material

10865_2017_9881_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 113 kb)

References

  1. Adams, S. A., Matthews, C. E., Ebbeling, C. B., Moore, C. G., Cunningham, J. E., Fulton, J., et al. (2005). The effect of social desirability and social approval on self-reports of physical activity. American Journal of Epidemiology, 161, 389–398.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  3. Allison, P. D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods and Research, 28, 301–309.CrossRefGoogle Scholar
  4. Antoniewicz, F., & Brand, R. (2016). Learning to like exercising: Evaluative conditioning changes automatic evaluations of exercising and influences subsequent exercising behavior. Journal of Sport & Exercise Psychology, 38, 138–148.CrossRefGoogle Scholar
  5. Baruth, M., Sharpe, P. A., Hutto, B., Wilcox, S., & Warren, T. Y. (2013). Patterns of sedentary behavior in overweight and obese women. Ethnicity and Disease, 23, 336–342.PubMedPubMedCentralGoogle Scholar
  6. Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J., & Martin, B. W. (2012). Correlates of physical activity: Why are some people physically active and others not? The Lancet, 380, 258–271.CrossRefGoogle Scholar
  7. Berry, T. R. (2016). Changes in implicit and explicit exercise-related attitudes after reading targeted exercise-related information. Psychology of Sport and Exercise, 22, 273–278.CrossRefGoogle Scholar
  8. Blanton, H., Burrows, C. N., & Jaccard, J. (2016). To accurately estimate implicit influences on health behavior, accurately estimate explicit influences. Health Psychology, 35, 856–860.CrossRefPubMedGoogle Scholar
  9. Bluemke, M., Brand, R., Schweizer, G., & Kahlert, D. (2010). Exercise might be good for me, but I don’t feel good about it: Do automatic associations predict exercise behavior? Journal of Sport & Exercise Psychology, 32, 137–153.CrossRefGoogle Scholar
  10. Calitri, R., Lowe, R., Eves, F. F., & Bennett, P. (2009). Associations between visual attention, implicit and explicit attitude and behavior for physical activity. Psychology & Health, 24, 1105–1123.CrossRefGoogle Scholar
  11. Cheval, B., Sarrazin, P., Isoard-Gautheur, S., Radel, R., & Friese, M. (2015). Reflective and impulsive processes explain (in)effectiveness of messages promoting physical activity: A randomized controlled trial. Health Psychology, 34, 10–19.CrossRefPubMedGoogle Scholar
  12. Cheval, B., Sarrazin, P., Isoard-Gautheur, S., Radel, R., & Friese, M. (2016). How impulsivity shapes the interplay of impulsive and reflective processes involved in objective physical activity. Personality and Individual Differences, 96, 132–137.CrossRefGoogle Scholar
  13. Chevance, G., Caudroit, J., Romain, A., & Boiché, J. (2016). The adoption of physical activity and eating behaviors among persons with obesity and in the general population: The role of implicit attitudes within the theory of planned behavior. Psychology, Health & Medicine, 22, 319–324.CrossRefGoogle Scholar
  14. Chevance, G., Héraud, N., Varray, A., & Boiché, J. (2017). Change in explicit and implicit motivation toward physical activity and sedentary behavior in pulmonary rehabilitation and associations with post-rehabilitation. Rehabilitation Psychology, 62, 119–129.CrossRefPubMedGoogle Scholar
  15. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Earlbaum Associates.Google Scholar
  16. Conroy, D. E., Hyde, A. L., Doerksen, S. E., & Ribeiro, N. F. (2010). Implicit attitudes and explicit motivation prospectively predict physical activity. Annals of Behavioral Medicine, 39, 112–118.CrossRefPubMedGoogle Scholar
  17. Downs, D., & Hausenblas, H. (2005). Elicitation studies and the theory of planned behavior: A systematic review of exercise beliefs. Psychology of Sport and Exercise, 6, 1–31.CrossRefGoogle Scholar
  18. Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist accelerometer algorithms for free-living behavior classification. Medicine and Science in Sports and Exercise, 48, 933–940.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Endrighi, R., Basen-Engquist, K., Szeto, E., Perkins, H., Baum, G., Cox-Martin, M., et al. (2016). Self-reported and automatic cognitions are associated with exercise behavior in cancer survivors. Health Psychology, 35, 824–828.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eves, F. F., Scott, E. J., Hoppé, R., & French, D. P. (2007). Using the affective priming paradigm to explore the attitudes underlying walking behaviour. British Journal of Health Psychology, 12, 571–585.CrossRefPubMedGoogle Scholar
  21. Ferguson, C. J. (2008). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40, 532–538.CrossRefGoogle Scholar
  22. Finkelstein, E., Khavjou, O., Thompson, H., Trogdon, J., Pan, L., Sherry, B., et al. (2012). Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine, 42, 563–570.CrossRefPubMedGoogle Scholar
  23. Finucane, M., Stevens, G., Cowan, M., Danaei, G., Lin, J., Paciorek, C., et al. (2011). National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. The Lancet, 377, 557–567.CrossRefGoogle Scholar
  24. Friese, M., Hofmann, W., & Schmitt, M. (2008). When and why do implicit measures predict behavior? Empirical evidence for the moderating role of opportunity, motivation, and process reliance. European Review of Social Psychology, 19, 285–338.CrossRefGoogle Scholar
  25. Gourlan, M., Trouilloud, D., & Sarrazin, P. (2011). Interventions promoting physical activity among obese populations: A meta-analysis considering global effect, long-term maintenance, physical activity indicators and dose characteristics. Obesity Reviews, 12, 633–645.CrossRefGoogle Scholar
  26. Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychological Review, 102, 4–27. doi:10.1037//0033-295x.102.1.4 CrossRefPubMedGoogle Scholar
  27. Greenwald, A. G., Poehlman, T. A., Uhlmann, E., & Banaji, M. R. (2009). Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. Journal of Personality and Social Psychology, 97, 17–41.CrossRefPubMedGoogle Scholar
  28. Hagger, M., Chatzisarantis, N., & Biddle, S. (2002). The influence of autonomous and controlling motives on physical activity intentions within the Theory of Planned Behaviour. British Journal of Health Psychology, 7, 283–297.CrossRefPubMedGoogle Scholar
  29. Hall, P., & Fong, G. (2007). Temporal self-regulation theory: A model for individual health behavior. Health Psychology Review, 1, 6–52.CrossRefGoogle Scholar
  30. Hall, P., Fong, G. T., Epp, L. J., & Elias, L. J. (2008). Executive function moderates the intention-behavior link for physical activity and dietary behavior. Psychology & Health, 23, 309–326.CrossRefGoogle Scholar
  31. Hofmann, W., Friese, M., & Wiers, R. (2008). Impulsive versus reflective influences on health behavior: A theoretical framework and empirical review. Health Psychology Review, 2, 111–137.CrossRefGoogle Scholar
  32. Hollands, G. J., Marteau, T. M., & Fletcher, P. C. (2016). Nonconscious processes in changing health-related behaviour: A conceptual analysis and framework. Health Psychology Review, 10, 1–28.CrossRefGoogle Scholar
  33. Hyde, A. L., Elavsky, S., Doerksen, S. E., & Conroy, D. E. (2012). The stability of automatic evaluations of physical activity and their relations with physical activity. Journal of Sport & Exercise Psychology, 34, 715–736. doi:10.1123/jsep.34.6.715 CrossRefGoogle Scholar
  34. JASP Team. (2016). JASP [Computer software]. Retrieved from, https://jasp-stats.org/download/
  35. Jensen, M., Ryan, D., Apovian, C., Ard, J., Comuzzie, A., Donato, K., et al. (2013). Guideline for the management of overweight and obesity in adults. Circulation, 129, 102–138.CrossRefGoogle Scholar
  36. Karpinski, A., & Steinman, R. B. (2006). The single category implicit association test as a measure of implicit social cognition. Journal of Personality and Social Psychology, 91, 16–32.CrossRefPubMedGoogle Scholar
  37. Maher, J. P., & Conroy, D. E. (2016). A dual-process model of older adults’ sedentary behavior. Health Psychology, 35, 262–272.CrossRefPubMedGoogle Scholar
  38. Markland, D., Hall, C. R., Duncan, L. R., & Simatovic, J. (2015). The effects of an imagery intervention on implicit and explicit exercise attitudes. Psychology of Sport and Exercise, 17, 24–31.CrossRefGoogle Scholar
  39. McEachan, R., Taylor, N., Harrison, R., Lawton, R., Gardner, P., & Conner, M. (2016). Meta-analysis of the reasoned action approach (RAA) to understanding health behaviors. Annals of Behavioral Medicine, 50, 592–612.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miller, A. A., & Spencer, S. J. (2014). Obesity and neuroinflammation: A pathway to cognitive impairment. Brain, Behavior, and Immunity, 42, 10–21.CrossRefPubMedGoogle Scholar
  41. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699.CrossRefPubMedGoogle Scholar
  42. Papies, E. K. (2016). Health goal priming as a situated intervention tool: How to benefit from nonconscious motivational routes to health behaviour. Health Psychology Review, 10, 408–424.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Perugini, M. (2005). Predictive models of implicit and explicit attitudes. British Journal of Social Psychology, 44, 29–45.CrossRefPubMedGoogle Scholar
  44. R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
  45. Rebar, A., Dimmock, J., Jackson, B., Rhodes, R., Kates, A., Starling, J., et al. (2016). A systematic review of the effects of non-conscious regulatory processes in physical activity. Health Psychology Review, 10, 395–407.CrossRefPubMedGoogle Scholar
  46. Rebar, A. L., Ram, N., & Conroy, D. E. (2015). Using the EZ-diffusion model to score a single-category implicit association test of physical activity. Psychology of Sport and Exercise, 16, 96–105.CrossRefPubMedGoogle Scholar
  47. Rhodes, R. E. (2017). The evolving understanding of physical activity behavior: A multi-process action control approach. Advances in Motivation Science, 4, 171–205. doi:10.1016/bs.adms.2016.11.001 CrossRefGoogle Scholar
  48. Rhodes, R. E., & Blanchard, C. M. (2008). Do sedentary motives adversely affect physical activity? Adding cross-behavioural cognitions to the theory of planned behaviour. Psychology & Health, 23, 789–805.CrossRefGoogle Scholar
  49. Rhodes, R. E., & Dickau, L. (2012). Experimental evidence for the intention–behavior relationship in the physical activity domain: A meta-analysis. Health Psychology, 31, 724–727.CrossRefPubMedGoogle Scholar
  50. Rhodes, R. E., & Horne, L. (2013). Deepening the measurement of motivation in the physical activity domain: Introducing behavioural resolve. Psychology of Sport and Exercise, 14, 455–460.CrossRefGoogle Scholar
  51. Rhodes, R. E., Janssen, I., Bredin, S. S. D., Warburton, D. E. R., & Bauman, A. (2017). Physical activity: Health impact, prevalence, correlates and interventions. Psychology & Health. doi:10.1080/08870446.2017.1325486 Google Scholar
  52. Rhodes, R. E., & Yao, C. (2015). Models accounting for intention-behavior discordance in the physical activity domain: A user’s guide, content overview, and review of current evidence. International Journal of Behavioral Nutrition and Physical Activity, 12, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Richetin, J., Costantini, G., Perugini, M., & Schönbrodt, F. (2015). Should we stop looking for a better scoring algorithm for handling implicit association test data? Test of the role of errors, extreme latencies treatment, scoring formula, and practice trials on reliability and validity. PLoS ONE, 10, 0129601.CrossRefGoogle Scholar
  54. Rollo, S., Gaston, A., & Prapavessis, H. (2016). Cognitive and motivational factors associated with sedentary behavior: A systematic review. AIMS Public Health, 3, 956–984.CrossRefGoogle Scholar
  55. Sabia, S., Cogranne, P., van Hees, V. T., Bell, J. A., Elbaz, A., Kivimaki, M., et al. (2015). Physical activity and adiposity markers at older ages: Accelerometer vs questionnaire data. Journal of the American Medical Directors Association, 16, 7–13.CrossRefGoogle Scholar
  56. Sedentary Behaviour Research Networ. (2012). Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Applied Physiology, Nutrition and Metabolism, 37, 540–542.CrossRefGoogle Scholar
  57. Sheeran, P., Bosch, J., Crombez, G., Hall, P., Harris, J., Papies, E., et al. (2016). Implicit processes in health psychology: Diversity and promise. Health Psychology, 35, 761–766.CrossRefPubMedGoogle Scholar
  58. Sheeran, P., Gollwitzer, P., & Bargh, J. (2013). Nonconscious processes and health. Health Psychology, 32, 460–473.CrossRefPubMedGoogle Scholar
  59. Soper, D. S. (2017). Effect size calculator for multiple regression [software]. Available from, http://www.danielsoper.com/statcalc
  60. Sutin, A. R., Costa, P. T., Chan, W., Milaneschi, Y., Eaton, W. W., Zonderman, A. B., et al. (2013). I know not to, but i can’t help it: Weight gain and changes in impulsivity-related personality traits. Psychological Science, 24, 1323–1328.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sutin, A. R., Ferrucci, L., Zonderman, A. B., & Terracciano, A. (2011). Personality and obesity across the adult life span. Journal of Personality and Social Psychology, 101, 579–592.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tabachnick, B. G., & Fidell, S. L. (2007). Using multivariate statistics (5th ed.). Boston: Allyn and Bacon.Google Scholar
  63. Teixeira, P., Carraça, E., Marques, M., Rutter, H., Oppert, J., De Bourdeaudhuij, I., et al. (2015). Successful behavior change in obesity interventions in adults: A systematic review of self-regulation mediators. BMC Medicine, 13, 13–84.CrossRefGoogle Scholar
  64. Trost, S. G., Owen, N., Bauman, A. E., Salles, J. F., & Brown, W. (2002). Correlates of adults’ participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34, 1996–2001. doi:10.1097/00005768-200212000-00020 CrossRefPubMedGoogle Scholar
  65. van Hees, V. T., Fang, Z., Langford, J., Assah, F., Mohammad, A., Da Silva, I. C., et al. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. Journal of Applied Physiology, 117, 738–744.CrossRefPubMedPubMedCentralGoogle Scholar
  66. van Hees, V. T., Gorzelniak, L., León, E. C., Eder, M., Pias, M., Taherian, S., et al. (2013). Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. doi:10.1371/journal.pone.0061691 PubMedPubMedCentralGoogle Scholar
  67. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67, 361–370.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Guillaume Chevance
    • 1
    • 2
  • Johan Caudroit
    • 3
  • Thomas Henry
    • 2
  • Philippe Guerin
    • 2
  • Julie Boiché
    • 1
  • Nelly Héraud
    • 2
  1. 1.Laboratory EpsylonUniv. MontpellierMontpellierFrance
  2. 2.Les Cliniques du Souffle ®Groupe 5 SantéToulougesFrance
  3. 3.Laboratoire sur les Vulnérabilités et l’Innovation sur le SportUniversité Claude Bernard Lyon 1LyonFrance

Personalised recommendations