Journal of Behavioral Medicine

, Volume 38, Issue 2, pp 237–250 | Cite as

Disentangling Multiple Sclerosis and depression: an adjusted depression screening score for patient-centered care

  • Douglas D. Gunzler
  • Adam Perzynski
  • Nathan Morris
  • Robert Bermel
  • Steven Lewis
  • Deborah Miller
Article

Abstract

Screening for depression can be challenging in Multiple Sclerosis (MS) patients due to the overlap of depressive symptoms with other symptoms, such as fatigue, cognitive impairment and functional impairment, for MS patients. The aim of this study was to understand these overlapping symptoms and subsequently develop an adjusted depression screening tool for better clinical assessment of depressive symptoms in MS patients. We evaluated 3,507 MS patients with a self-reported depression screening (PHQ-9) score using a multiple indicator multiple cause modeling approach. Our models showed significant differential item functioning effects denoting significant overlap of depressive symptoms with all MS symptoms under study and good model fit. The magnitude of the overlap was especially large for fatigue. Adjusted depression screening scales were formed based on factor scores and loadings that will allow clinicians to understand the depressive symptoms separate from other symptoms for MS patients for improved patient care.

Keywords

Multiple Sclerosis Fatigue Depression Structural equation modeling Factor analysis Multiple indicator multiple cause model 

Supplementary material

10865_2014_9574_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 33 kb)

References

  1. Aikens, J. E., Reinecke, M. A., Pliskin, N. H., Fischer, J. S., Wiebe, J. S., McCracken, L. M., et al. (1999). Assessing depressive symptoms in multiple sclerosis: Is it necessary to omit items from the original Beck Depression Inventory? Journal of Behavioral Medicine, 22, 127–142.CrossRefPubMedGoogle Scholar
  2. Alemayehu, D., Cappelleri, J. C., & Murphy, M. F. (2012). Conceptual and analytical considerations toward the use of patient-reported outcomes in personalized medicine. American Health & Drug Benefits, 5, 310–317.Google Scholar
  3. Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.CrossRefGoogle Scholar
  4. Benedict, R. H., Fishman, I., McClellan, M. M., Bakshi, R., & Weinstock-Guttman, B. (2003). Validity of the beck depression inventory-fast screen in multiple sclerosis. Multiple Sclerosis, 9, 393–396.CrossRefPubMedGoogle Scholar
  5. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.CrossRefPubMedGoogle Scholar
  6. Blacker, D. (2009). Psychiatric rating scales. In B. J. Sadock, V. A. Sadock, & P. Ruiz (Eds.), Kaplan and Sadock’s comprehensive textbook of psychiatry (9th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  7. Bollen, K. A. (1989). Structural equations with latent variables. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  8. Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. Newbury Park, CA: Sage Publications.Google Scholar
  9. Brown, T. (2006). Confirmatory factor analysis for applied research (methodology in the social science). New York, NY: The Guilford Press.Google Scholar
  10. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models. Newbury Park, CA: Sage Publications.Google Scholar
  11. Casella, G., & Berger, R. L. (2002). Statistical inference (2nd ed.). Pacific Grove, CA: Duxbury Press.Google Scholar
  12. Chang, C. H., Nyenhuis, D. L., Cella, D., Luchetta, T., Dineen, K., & Reder, A. T. (2003). Psychometric evaluation of the Chicago Multiscale Depression Inventory in multiple sclerosis patients. Multiple Sclerosis, 9, 160–170.CrossRefPubMedGoogle Scholar
  13. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefPubMedGoogle Scholar
  14. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10, 1–9.Google Scholar
  15. Crawford, P. W. (2009). Assessment of depression in multiple sclerosis validity of including somatic items on the beck depression inventory-II. International Journal of MS Care, 11, 167–173.CrossRefGoogle Scholar
  16. Ferrando, S. J., Samton, J., Mor, N., Nicora, S., Findler, M., & Apatoff, B. (2007). Patient health questionnaire-9 to screen for depression in outpatients with multiple sclerosis. International Journal of MS Care, 9, 99–103.CrossRefGoogle Scholar
  17. Fischer, J. S., Rudick, R. A., Cutter, G. R., & Reingold, S. C. (1999). The multiple sclerosis functional composite measure (MSFC): An integrated approach to MS clinical outcome assessment. Multiple Sclerosis, 5, 244–250.CrossRefPubMedGoogle Scholar
  18. Gilbody, S., Richards, D., Brealey, S., & Hewitt, C. (2007). Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): A diagnostic meta-analysis. Journal of General Internal Medicine, 11, 596–602.Google Scholar
  19. Goldman Consensus Panel. (2005). The Goldman Consensus statement on depression in multiple sclerosis. Multiple Sclerosis, 11, 328–337.CrossRefGoogle Scholar
  20. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 56–62.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hansson, M., Chotai, J., Nordstöm, A., & Bodlund, O. (2009). Comparison of two self-rating scales to detect depression: HADS and PHQ-9. British Journal of General Practice, 59, e283–e288.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.CrossRefPubMedGoogle Scholar
  23. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.CrossRefGoogle Scholar
  24. Huang, F. Y., Chung, H., Kroenke, K., Delucchi, K. L., & Spitzer, R. L. (2006). Using the Patient Health Questionnaire-9 to measure depression among racially and ethnically diverse primary care patients. Journal of General Internal Medicine, 21, 547–552.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Johnson, D. R., & Creech, J. C. (1983). Ordinal measures in multiple indicator models: A simulation study of categorization error. American Sociological Review, 48, 398–407.CrossRefGoogle Scholar
  26. Kalpakjian, C. Z., Toussaint, L. L., Albright, K. J., Bombardier, C. H., Krause, J. K., & Tate, D. G. (2009). Patient Health Questionnaire-9 in spinal cord injury: An examination of factor structure as related to gender. Journal of Spinal Cord Medicine, 32, 147–156.PubMedCentralPubMedGoogle Scholar
  27. Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York, NY: Guilford.Google Scholar
  28. Knowledge Program developed at Cleveland Clinic’s Neurological Institute. (2008–2013). Retrieved from, http://my.clevelandclinic.org/neurological_institute/about/default.aspx
  29. Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606–613.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kroenke, K., Spitzer, R. L., & Williams, J. B. (2003). The Patient Health Questionnaire-2: Validity of a two-item depression screener. Medical Care, 41, 1284–1292.CrossRefPubMedGoogle Scholar
  31. Krupp, L. B. (2004). Fatigue in multiple sclerosis. New York, NY: Demos Medical Publishing.Google Scholar
  32. Marrie, R. A., & Goldman, M. (2007). Validity of performance scales for disability assessment in multiple sclerosis. Multiple Sclerosis, 13, 1176–1182.CrossRefPubMedGoogle Scholar
  33. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling A Multidisciplinary Journal, 11, 320–341.CrossRefGoogle Scholar
  34. Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Neurological Institute. (2013). Retrieved from, http://my.clevelandclinic.org/neurological_institute/mellen-center-multiple-sclerosis/default.aspx
  35. Mohr, D. C., Goodkin, D. E., Likosky, W., Beutler, L., Gatto, N., & Langan, M. K. (1997). Identification of Beck Depression Inventory items related to multiple sclerosis. Journal of Behavioral Medicine, 20, 407–414.CrossRefPubMedGoogle Scholar
  36. Mohr, D. C., Hart, S. L., & Goldberg, A. (2003). Effects of treatment for depression on fatigue in multiple sclerosis. Psychosomatic Medicine, 65, 542–547.CrossRefPubMedGoogle Scholar
  37. Multiple Sclerosis Association of America. (2014). Retrieved from, http://www.mymsaa.org/about-ms/faq/
  38. Muthén, B., & Muthén, L. (2000). Integrating person-centered and variable-centered analysis: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24, 882–891.CrossRefPubMedGoogle Scholar
  39. Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  40. Pinto-Meza, A., Serrano-Blanco, A., et al. (2005). Assessing depression in primary care with the PHQ-9: Can it be carried out over the telephone? Journal of General Internal Medicine, 20, 738–742.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Polman, C. H., & Rudick, R. A. (2010). The multiple sclerosis functional composite: A clinically meaningful measure of disability. Neurology, 74, S8–S15.CrossRefPubMedGoogle Scholar
  42. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  43. Raykov, T., & Marcoulides, G. (2011). Introduction to psychometric theory. New York, NY: Taylor and Francis Group.Google Scholar
  44. Rudick, R. A., Antel, J., Confavreux, C., Cutter, G., Ellison, G., Fischer, J., et al. (1996). Clinical outcomes assessment in multiple sclerosis. Annals of Neurology, 40, 469–479.CrossRefPubMedGoogle Scholar
  45. SAS Institute Inc. (2008). SAS/STAT ® 9.2 user’s guide. Cary, NC: SAS Institute Inc.Google Scholar
  46. Schwartz, C. E., Vollmer, T., et al. (1999). Reliability and validity of two self-report measures of impairment and disability for MS. Neurology, 52, 63–70.CrossRefPubMedGoogle Scholar
  47. Siegert, R. J., & Abernethy, D. A. (2005). Depression in multiple sclerosis: A review. Journal of Neurology, Neurosurgery and Psychiatry, 76, 469–475.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Sjonnesen, K., Berzins, S., Fiest, K. M., Bulloch, A. G., Metz, L. M., Thombs, B. D., et al. (2012). Evaluation of the 9-item Patient Health Questionnaire (PHQ-9) as an assessment instrument for symptoms of depression in patients with multiple sclerosis. Postgraduate Medicine, 124, 69–77.CrossRefPubMedGoogle Scholar
  49. Sudhahar, J. C., Israel, D., & Selvam, M. (2006). Banking service loyalty determination through SEM technique. Journal of Applied Sciences, 6, 1472–1480.CrossRefGoogle Scholar
  50. Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.CrossRefGoogle Scholar
  51. Wallin, M. T., Wilken, J. A., Turner, A. P., Williams, R. M., & Kane, R. (2006). Depression and multiple sclerosis: Review of a lethal combination. Journal of Rehabilitation Research and Development, 43, 45–62.CrossRefPubMedGoogle Scholar
  52. Whitaker, J. N., McFarland, H. F., Rudge, P., & Reingold, S. C. (1995). Outcomes assessment in multiple sclerosis clinical trials: A critical analysis. Multiple Sclerosis, 1, 37–47.PubMedGoogle Scholar
  53. Woods, C. M., Oltmanns, T. F., & Turkheimer, E. (2009). Illustration of MIMIC-Model DIF testing with the schedule for nonadaptive and adaptive personality. Journal of Psychopathological and Behavioral Assessment, 31, 320–330.CrossRefGoogle Scholar
  54. Zumbo, B. D., & Zimmerman, D. W. (1993). Is the selection of statistical methods governed by level of measurement? Canadian Psychology, 34, 390–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Douglas D. Gunzler
    • 1
  • Adam Perzynski
    • 1
  • Nathan Morris
    • 2
  • Robert Bermel
    • 3
  • Steven Lewis
    • 1
  • Deborah Miller
    • 3
  1. 1.Center for Health Care Research and Policy, MetroHealth Medical CenterCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandUSA
  3. 3.Mellen Center for Multiple Sclerosis Treatment and ResearchCleveland Clinic Main CampusClevelandUSA

Personalised recommendations