Journal of Behavioral Medicine

, Volume 31, Issue 6, pp 525–535 | Cite as

The covariation of multiple risk factors in primary care: a latent class analysis

  • Jennifer S. Funderburk
  • Stephen A. Maisto
  • Dawn E. Sugarman
  • Mike Wade
Article

Abstract

There is a need to advance the quality of healthcare by increasing knowledge about multiple risk factors and how to intervene to improve health outcomes. In an effort to better describe the presentation of multiple risks, this study involved a database review to describe the prevalence and covariation of multiple risk factors in individuals presenting to primary care. Patients with a primary care encounter from January 1, 2005 to June 30, 2005 (N = 10,043) were identified from the Department of Veteran’s Affair’s medical database and information about the following risk factors was extracted: alcohol use, psychiatric distress, body mass, smoking status, blood pressure, and posttraumatic stress. Exploratory and confirmatory latent class analyses identified three classes of individuals. Class 1 consisted of individuals with an overall lower level of risk for health problems, but a moderately high likelihood of elevated blood pressure. Individuals in Class 2 appeared to have the greatest need for intervention because they had a moderate to high likelihood of reporting at risk alcohol use, smoking, depression, and posttraumatic stress. Class 3 consisted of individuals reporting the co-occurrence of at risk alcohol use, smoking, and elevated blood pressure. Similar to past research, the findings highlight the need for addressing multiple risk factors in primary care. In addition, this study expands on the literature by identifying specific patterns of covariation among different risk factors that suggest avenues for research and program development.

Keywords

Multiple risk factors Primary care Latent class analysis Veterans Integrated healthcare 

References

  1. Agresti, A., & Yang, M. (1986). An empirical investigation of some effects of sparseness in contingency tables. Computational Statistics & Data Analysis, 5, 9–21. doi:10.1016/0167-9473(87)90003-X.CrossRefGoogle Scholar
  2. Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., & Montiero, M. G. (2001). AUDIT: The Alcohol Use Identification Test. Guidelines for use in primary care (2nd ed.). Geneva: World Health Organization.Google Scholar
  3. Blount, A. (Ed.). (1998). Integrated primary care: The future of medical and mental health collaboration. New York: W. W. Norton & Co.Google Scholar
  4. Blount, A. (2003). Integrated primary care: Organizing the evidence. Families, Systems & Health, 21, 121–133. doi:10.1037/1091-7527.21.2.121.CrossRefGoogle Scholar
  5. Bradley, K. A., DeBenedetti, A. F., Volk, R. J., Williams, E. C., Frank, D., & Kivlahan, D. R. (2007). AUDIT-C as a brief screen for alcohol misuse in primary care. Alcoholism, Clinical and Experimental Research, 31, 1208–1217. doi:10.1111/j.1530-0277.2007.00403.x.PubMedCrossRefGoogle Scholar
  6. Cakir, H., & Pinar, R. (2006). Randomized controlled trial on lifestyle modification in hypertensive patients. Western Journal of Nursing Research, 28, 190–209. doi:10.1177/0193945905283367.PubMedCrossRefGoogle Scholar
  7. Caspi, A., Begg, D., Dickson, N., Harrington, H., Langley, J., Moffitt, T. E., et al. (1997). Personality differences predict health-risk behaviors in young adulthood: Evidence from a longitudinal study. Journal of Personality and Social Psychology, 73, 1052–1063. doi:10.1037/0022-3514.73.5.1052.PubMedCrossRefGoogle Scholar
  8. Cifuentes, M., Fernald, D. H., Green, L. A., Niebauer, L. J., Crabtree, B. F., Stange, K. C., et al. (2005). Prescription for health: Changing primary care practice to foster healthy behaviors. Annals of Family Medicine, 3(Suppl 2), S4–S11. doi:10.1370/afm.378.PubMedCrossRefGoogle Scholar
  9. Coups, E. J., Gaba, A., & Orleans, C. T. (2004). Physician screening for multiple behavioral health risk factors. American Journal of Preventive Medicine, 27, 34–41. doi:10.1016/j.amepre.2004.04.021.PubMedCrossRefGoogle Scholar
  10. Cupples, M. E., & McKnight, A. (1994). Randomised controlled trial of health promotion in general practice for patients at high cardiovascular risk. British Medical Journal (Clinical Research Ed.), 309, 993–996.Google Scholar
  11. Dawson, D. A., Grant, B. F., Stinson, F. S., & Zhou, Y. (2005). Effectiveness of the derived alcohol use disorders identification test (AUDIT-C) in screening for alcohol use disorders and risk drinking in the US general population. Alcoholism, Clinical and Experimental Research, 29, 844–854. doi:10.1097/01.ALC.0000164374.32229.A2.PubMedCrossRefGoogle Scholar
  12. de Vries, H., van’t Riet, J., Spigt, M., Metsemakers, J., van den Akker, M., Vermunt, J. K., et al. (2008). Clusters of lifestyle behaviors: Results from the Dutch SMILE study. Preventive Medicine, 46, 203–208. doi:10.1016/j.ypmed.2007.08.005.PubMedCrossRefGoogle Scholar
  13. deGruy, F. V., III (1997). Mental healthcare in the primary care setting: A paradigm problem. Families, Systems & Health, 15, 3–26.CrossRefGoogle Scholar
  14. Dubbert, P. M. (1995). Behavioral (life-style) modification in the prevention and treatment of hypertension. Clinical Psychology Review, 15, 187–216.CrossRefGoogle Scholar
  15. Dym, B., & Berman, S. (1986). The primary health care team: Family physician and family therapist in joint practice. Family Systems Medicine, 4, 9–21.CrossRefGoogle Scholar
  16. Emmen, M. J., Peters, E., Elving, L. D., Bredie, S. J. H., Wollersheim, H., Bleijenberg, G., et al. (2006). A brief behavioral feedback intervention in hospital outpatients with a high cardiovascular risk. Patient Education and Counseling, 60, 32–40.PubMedCrossRefGoogle Scholar
  17. Goldberg, D. G. (1978). Manual of the general health questionnaire. Windsor: NFER Publishing.Google Scholar
  18. Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge, UK: Cambridge University Press.Google Scholar
  19. Hellenius, M. L., de Faire, U., Berglund, B., Hamsten, A., & Krakau, I. (1993). Diet and exercise are equally effective in reducing risk for cardiovascular disease. Results of a randomized controlled study in men with slightly to moderately raised cardiovascular risk factors. Atherosclerosis, 103, 81–91.PubMedCrossRefGoogle Scholar
  20. Hyman, D. J., Pavlik, V. N., Taylor, W. C., Goodrick, G. K., & Moye, L. (2007). Simultaneous vs sequential counseling for multiple behavior change. Archives of Internal Medicine, 167, 1152–1158.PubMedCrossRefGoogle Scholar
  21. Institute for Clinical Systems Improvement. (2006). Prevention and management of obesity (mature adolescents and adults). Bloomington, MN: Institute for Clinical Systems Improvement.Google Scholar
  22. Jackson, C., Coe, A., Cheater, F. M., & Wroe, S. (2007). Specialist health visitor-led weight management intervention in primary care: Exploratory evaluation. Journal of Advanced Nursing, 58, 23–34.PubMedCrossRefGoogle Scholar
  23. Johnson, J. G., Spitzer, R. L., Williams, J. B. W., Kroenke, K., Linzer, M., Brody, D., et al. (1995). Psychiatric comorbidity, health status, and functional impairment associated with alcohol abuse and dependence in primary care patients: Findings of the PRIME MD-1000 study. Journal of Consulting and Clinical Psychology, 63, 133–140.PubMedCrossRefGoogle Scholar
  24. Ketola, E., Sipila, R., & Makela, M. (2000). Effectiveness of individual lifestyle interventions in reducing cardiovascular disease and risk factors. Annals of Medicine, 32, 239–251.PubMedCrossRefGoogle Scholar
  25. Kinder, L. S., Bradley, K. A., Katon, W. J., Ludman, E., McDonell, M. B., & Bryson, C. L. (2008). Depression, posttraumatic stress disorder, and mortality. Psychosomatic Medicine, 70, 20–26.PubMedCrossRefGoogle Scholar
  26. Kotchen, T. A., Kotchen, J. M., & Boegehold, M. A. (1991). Nutrition and hypertension prevention. Hypertension, 18, I115–I120.PubMedGoogle Scholar
  27. Langford, A. T., Sawyer, D. R., Gioimo, S., Brownson, C. A., & O’Toole, M. L. (2007). Patient-centered goal setting as a tool to improve diabetes self-management. The Diabetes Educator, 33, 139S–144S.PubMedCrossRefGoogle Scholar
  28. Ludman, E. J., Katon, W., Russo, J., Von Korff, M., Simon, G., Ciechanowski, P., et al. (2004). Depression and diabetes symptom burden. General Hospital Psychiatry, 26, 430–436.PubMedCrossRefGoogle Scholar
  29. Magidson, J., & Vermunt, J. K. (2000). Latent class cluster analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis. Cambridge, UK: Cambridge University Press.Google Scholar
  30. Magidson, J., & Vermunt, J. K. (2002). A nontechnical introduction to latent class models [Electronic Version], 1–15. Retrieved December 18, 2007 from http://www.statisticalinnovations.com.
  31. Magidson, J., & Vermunt, J. K. (2004). Latent class models. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 175–198). Thousand Oaks, CA: Sage Publications.Google Scholar
  32. Magruder, K. M., Frueh, B. C., Knapp, R. G., Davis, L., Hamner, M. B., Martin, R. H., et al. (2005). Prevalence of posttraumatic stress disorder in Veterans Affairs primary care clinics. General Hospital Psychiatry, 27, 167–179.CrossRefGoogle Scholar
  33. McCall, L., Clarke, D., Trauer, T., Piterman, L., & Ling, M. Y. (2007). Predictors of accuracy of recognition of emotional distress in general practice. Primary Care & Community Psychiatry, 12, 1–5.Google Scholar
  34. McCutcheon, A. L. (1987). Latent class analysis. Newbury Park: Sage Publications.Google Scholar
  35. McGinnis, J. M., & Foege, W. H. (1993). Actual causes of death in the United States. Journal of American Medical Association, 270, 2207–2212.CrossRefGoogle Scholar
  36. Mertens, J. R., Weisner, C., Ray, G. T., Fireman, B., & Walsh, K. (2005). Hazardous drinkers and drug users in HMO primary care: Prevalence, medical conditions, and costs. Alcoholism, Clinical and Experimental Research, 29, 989–998.PubMedCrossRefGoogle Scholar
  37. Multiple Risk Factor Intervention Trial Research Group. (1982). Multiple risk factor intervention trial: Risk factor changes and mortality results. Journal of the American Medical Association, 248, 1465–1477.CrossRefGoogle Scholar
  38. National Institute on Drug Abuse. (2006). Tobacco addiction (No. NIH Publication No. 06-4342). Rockville, MD.Google Scholar
  39. Orleans, C. T. (2004). Addressing multiple behavioral health risks in primary care. Broadening the focus of health behavior change research and practice. American Journal of Preventive Medicine, 27, 1–3.PubMedCrossRefGoogle Scholar
  40. Prins, A., Ouimette, P., Kimerling, R., Cameron, R. P., Hugelshofer, D. S., Shaw-Hegwer, J., et al. (2003). The primary care PTSD screen (PC-PTSD): Development and operating characteristics. Primary Care Psychiatry, 9, 9–14.CrossRefGoogle Scholar
  41. Pronk, N. P., Anderson, L. H., Crain, A. L., Martinson, B. C., O’Connor, P. J., Sherwood, N. E., et al. (2004a). Meeting recommendations for multiple healthy lifestyle factors. Prevalence, clustering, and predictors among adolescent, adult, and senior health plan members. American Journal of Preventive Medicine, 27, 25–33.PubMedCrossRefGoogle Scholar
  42. Pronk, N. P., Peek, C. J., & Goldstein, M. G. (2004b). Addressing multiple behavioral risk factors in primary care. A synthesis of current knowledge and stakeholder dialogue sessions. American Journal of Preventive Medicine, 27, 4–17.PubMedCrossRefGoogle Scholar
  43. Rosal, M. C., Ockene, J. K., Hurley, T. G., & Reiff, S. (2000). Prevalence and co-occurrence of health risk behaviors among high-risk drinkers in a primary care population. Preventive Medicine: An International Journal Devoted to Practice and Theory, 31, 140–147.Google Scholar
  44. Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R., & Grant, M. (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption: II. Addiction, 88, 791–804.PubMedCrossRefGoogle Scholar
  45. Smit, F., Beekman, A., Cuijpers, P., de Graaf, R., & Vollebergh, W. (2004). Selecting key variables for depression preventions: Results from a population-based prospective epidemiological study. Journal of Affective Disorders, 81, 241–249.PubMedCrossRefGoogle Scholar
  46. Stamler, R., Stamler, J., Gosch, F. C., Civinelli, J., Fishman, J., McKeever, P., et al. (1989). Primary prevention of hypertension by nutritional-hygienic means. Final report of a randomized, controlled trial. Journal of American Medical Association, 262, 1801–1807.Google Scholar
  47. StatSoft, Inc. (2007). Electronic statistics textbook [Electronic Version]. Retrieved August 27, 2008 from http://www.statsoft.com/textbook/stathome.html.
  48. Stein, M. B., McQuaid, J. R., Pedrelli, P., Lenox, R., & McCahill, M. E. (2000). Posttraumatic stress disorder in the primary care medical setting. General Hospital Psychiatry, 22, 261–269.PubMedCrossRefGoogle Scholar
  49. Strosahl, K. (1998). Integrating behavioral health and primary care services: The primary mental health care model. In A. Blount (Ed.), Integrated primary care: The future of medical and mental health collaboration (pp. 139–166). New York: W·W. Norton & Co.Google Scholar
  50. Trief, P. M., Ouimette, P., Wade, M., Shanahan, P., & Weinstock, R. S. (2006). Post-traumatic stress disorder and diabetes: Co-morbidity and outcomes in a male veterans sample. Journal of Behavioral Medicine, 29, 411–418.PubMedCrossRefGoogle Scholar
  51. U.S. Department of Health and Human Services. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (No. NIH Publication No. 03-5233).Google Scholar
  52. Vermunt, J. K., & Magidson, J. (2003). Latent Gold 3.0 user’s guide. Belmont, MA: Statistical Innovations, Inc.Google Scholar
  53. Wadland, W. C., & Ferenchick, G. S. (2004). Medical comorbidity in addictive disorders. Psychiatric Clinics of North America, 27, 675–687.PubMedCrossRefGoogle Scholar
  54. Wood, D. A., Kinmonth, A. L., Davies, G. A., Yarwood, J., Thompson, S. G., Pyke, S. D. M., et al. (1994). Randomised controlled trial evaluating cardiovascular screening and intervention in general practice: Principal results of British family heart study. British Medical Journal, 308, 313–320.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jennifer S. Funderburk
    • 1
    • 2
    • 3
  • Stephen A. Maisto
    • 1
    • 2
  • Dawn E. Sugarman
    • 1
    • 2
  • Mike Wade
    • 1
    • 4
  1. 1.Center for Integrated HealthcareSyracuse Veteran’s Affairs Medical CenterSyracuseUSA
  2. 2.Department of PsychologySyracuse UniversitySyracuseUSA
  3. 3.Department of PsychiatryUniversity of RochesterRochesterUSA
  4. 4.SUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations