Skip to main content

Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model

Abstract

This study was conducted to investigate the protective effects of glycyrrhizin on a rat model of osteoarthritis and elucidate the underlying mechanism. Rat osteoarthritis was established by using medial meniscectomy (MMx) and an anterior cruciate ligament transaction (ACLT). Glycyrrhizin (2, 4, and 10 mg/kg) was administered by intra-articular knee injection for 12 weeks. Incapacitance test was performed to determine mechanical hyperalgesia. Enzyme-linked immunosorbent assay (ELISA) was performed to measure cartilage degradation and inflammation-related markers. Quantitative reverse transcription PCR (RT-qPCR) and Western blot were performed to determine the mRNA and protein levels of genes, respectively. The results demonstrated that treatment with glycyrrhizin ameliorated mechanical hyperalgesia and bilateral joints oedema in a rat model of osteoarthritis. Treatment with 10 mg/kg glycyrrhizin also suppressed serum enzymes including matrix metalloproteinase (MMP)-1, MMP-3, prostaglandin E2, and C-telopeptide of type II collagen (CTX-II). In addition to inhibition of cartilage matrix catabolic related markers, treatment with glycyrrhizin also decreased the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and iNOS in serum and cartilage. The underlying mechanism study demonstrated that treatment with glycyrrhizin inhibited HMGB1 and the TLR4/NF-κB signaling pathway. In summary, treatment with glycyrrhizin ameliorated cartilage degeneration and inflammation in osteoarthritis rats by the regulation of HMGB1 and the TLR4/NF-κB signaling pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data is available from the authors by request.

References

  1. Abbate LM, Stevens J, Schwartz TA, Renner JB, Helmick CG, Jordan JM (2006) Anthropometric measures, body composition, body fat distribution, and knee osteoarthritis in women. Obesity (Silver Spring) 14(7):1274–1281. https://doi.org/10.1038/oby.2006.145

    Article  Google Scholar 

  2. Abramson SB (2004) Inflammation in osteoarthritis. J Rheumatol Suppl 70:70–76

    CAS  PubMed  Google Scholar 

  3. Altman RD (1991) Classification of disease: osteoarthritis. Semin Arthritis Rheum 20(6 Suppl 2):40–47. https://doi.org/10.1016/0049-0172(91)90026-v

    CAS  Article  PubMed  Google Scholar 

  4. Aulin C, Palmblad K, Klareskog L, Harris H (2017) Cartilage-saving effects of local HMGB1-neutralizing therapy in experimental osteoarthritis. Osteoarthr Cartil 25:S435

    Article  Google Scholar 

  5. Bian Y, Zhang M, Wang K (2018) Taurine protects against knee osteoarthritis development in experimental rat models. Knee 25(3):374–380. https://doi.org/10.1016/j.knee.2018.03.004

    Article  PubMed  Google Scholar 

  6. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20(10):739–744. https://doi.org/10.1097/01.bot.0000246468.80635.ef

    Article  PubMed  Google Scholar 

  7. Chen J, Lin S-H, Wong C-S (2019) Oral shea nut oil triterpene concentrate supplement ameliorates pain and histological assessment of articular cartilage deterioration in an ACLT injured rat knee osteoarthritis model. PLoS One 14(4):e0215812

    CAS  Article  Google Scholar 

  8. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361(9374):2045–2046. https://doi.org/10.1016/s0140-6736(03)13615-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. DeGroot J, Bank, R. A, Tchetverikov I, Verzijl N, TeKoppele JM (2002) Molecular markers for osteoarthritis: the road ahead. Curr Opin Rheumatol 14(5):585–589. https://doi.org/10.1097/00002281-200209000-00019

    CAS  Article  PubMed  Google Scholar 

  10. Felson DT, Anderson JJ, Naimark A, Kannel W, Meenan RF (1989) The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham study. J Rheumatol 16(9):1241–1245

    CAS  PubMed  Google Scholar 

  11. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham osteoarthritis study. Arthritis Rheum 30(8):914–918. https://doi.org/10.1002/art.1780300811

    CAS  Article  PubMed  Google Scholar 

  12. Fernihough J, Gentry C, Malcangio M, Fox A, Rediske J, Pellas T, Kidd B, Bevan S, Winter J (2004) Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 112(1–2):83–93. https://doi.org/10.1016/j.pain.2004.08.004

    Article  PubMed  Google Scholar 

  13. Glyn-Jones S, Palmer A, Agricola R, Price A, Vincent T, Weinans H et al (2015) Osteoarthritis. Lancet 386(9991):376–387

    CAS  Article  Google Scholar 

  14. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23(5):471–478

    CAS  Article  Google Scholar 

  15. Heinola T, Kouri VP, Clarijs P, Ciferska H, Sukura A, Salo J, Konttinen YT (2010) High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clin Exp Rheumatol 28(4):511–518

    CAS  PubMed  Google Scholar 

  16. Kean WF, Kean R, Buchanan WW (2004) Osteoarthritis: symptoms, signs and source of pain. Inflammopharmacology 12(1):3–31. https://doi.org/10.1163/156856004773121347

    CAS  Article  PubMed  Google Scholar 

  17. Kiso Y, Tohkin M, Hikino H, Hattori M, Sakamoto T, Namba T (1984) Mechanism of antihepatotoxic activity of glycyrrhizin. I: effect on free radical generation and lipid peroxidation. Planta Med 50(4):298–302. https://doi.org/10.1055/s-2007-969714

    CAS  Article  PubMed  Google Scholar 

  18. Kraus VB (2011) Osteoarthritis year 2010 in review: biochemical markers. Osteoarthr Cartil 19(4):346–353. https://doi.org/10.1016/j.joca.2011.02.002

    CAS  Article  Google Scholar 

  19. Kumar A, Oz MB, Elayyan J, Reich E, Binyamin M, Kandel L et al (2016) SOX9 acetylation reduces aggrecan expression in adult human chondrocytes. Osteoarthr Cartil 24:S154

    Article  Google Scholar 

  20. Lin J, Zhang W, Jones A, Doherty M (2004) Efficacy of topical non-steroidal anti-inflammatory drugs in the treatment of osteoarthritis: meta-analysis of randomised controlled trials. BMJ 329(7461):324. https://doi.org/10.1136/bmj.38159.639028.7C

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Liu C, Shen YJ, Tu QB, Zhao YR, Guo H, Wang J, Zhang L, Shi HW, Sun Y (2018) Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed Pharmacother 101:608–616. https://doi.org/10.1016/j.biopha.2018.02.131

    CAS  Article  PubMed  Google Scholar 

  22. Longo UG, Loppini M, Fumo C, Rizzello G, Khan WS, Maffulli N, Denaro V (2012) Osteoarthritis: new insights in animal models. Open Orthop J 6:558–563. https://doi.org/10.2174/1874325001206010558

    Article  PubMed  PubMed Central  Google Scholar 

  23. McCoy AM (2015) Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 52(5):803–818. https://doi.org/10.1177/0300985815588611

    CAS  Article  PubMed  Google Scholar 

  24. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M et al (2007) Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14(4):431–441. https://doi.org/10.1016/j.chembiol.2007.03.007

    CAS  Article  PubMed  Google Scholar 

  25. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E (2006) High mobility group box 1 protein interacts with multiple toll-like receptors. Am J Physiol Cell Physiol 290(3):C917–C924. https://doi.org/10.1152/ajpcell.00401.2005

    CAS  Article  PubMed  Google Scholar 

  26. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279(9):7370–7377. https://doi.org/10.1074/jbc.M306793200

    CAS  Article  PubMed  Google Scholar 

  27. Penninx BW, Abbas H, Ambrosius W, Nicklas BJ, Davis C, Messier SP, Pahor M (2004) Inflammatory markers and physical function among older adults with knee osteoarthritis. J Rheumatol 31(10):2027–2031

    PubMed  Google Scholar 

  28. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker F (1989) Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet 2(8662):519–522. https://doi.org/10.1016/s0140-6736(89)90651-x

    CAS  Article  PubMed  Google Scholar 

  29. Singh P, Marcu KB, Goldring MB, Otero M (2019) Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 1442(1):17–34

    CAS  Article  Google Scholar 

  30. Sitia G, Iannacone M, Muller S, Bianchi ME, Guidotti LG (2007) Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J Leukoc Biol 81(1):100–107. https://doi.org/10.1189/jlb.0306173

    CAS  Article  PubMed  Google Scholar 

  31. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G (2005) A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil 13(9):769–781

    Article  Google Scholar 

  32. van den Bosch MH, Blom AB, van de Loo FA, Koenders MI, Lafeber FP, Van Den Berg WB et al (2017) Brief report: induction of matrix metalloproteinase expression by synovial wnt signaling and association with disease progression in early symptomatic osteoarthritis. Arthritis Rheumatol 69(10):1978–1983

    Article  Google Scholar 

  33. Woodell-May JE, Sommerfeld SD (2020) Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res 38(2):253–257. https://doi.org/10.1002/jor.24457

    Article  PubMed  Google Scholar 

  34. Yang C-Y, Chanalaris A, Troeberg L (2017) ADAMTS and ADAM metalloproteinases in osteoarthritis–looking beyond the ‘usual suspects’. Osteoarthr Cartil 25(7):1000–1009

    CAS  Article  Google Scholar 

  35. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26(3):355–369

    Article  Google Scholar 

  36. Zivanovic S, Rackov LP, Zivanovic A, Jevtic M, Nikolic S, Kocic S (2011) Cartilage oligomeric matrix protein - inflammation biomarker in knee osteoarthritis. Bosn J Basic Med Sci 11(1):27–32. https://doi.org/10.17305/bjbms.2011.2619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Ethics declarations

Ethical approval

The study was approved by the ethics commitment of Cangzhou Central Hospital.

Informed consent

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, J., Wang, B. et al. Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 53, 285–293 (2021). https://doi.org/10.1007/s10863-021-09889-1

Download citation

Keywords

  • Osteoarthritis
  • Glycyrrhizin
  • HMGB1 inhibitor
  • Inflammation
  • TLR4/NF-κB