Skip to main content

Advertisement

Log in

MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is one of the most common renal malignancies in the urinary system. Numerous studies have demonstrated that miRNAs can regulate tumorigenesis and progression. This study aims to investigate the role and regulatory mechanism of miR-6838-5p in RCC. Our study confirmed that miR-6838-5p was upregulated in human RCC tissues (30/42, 77.43%, P < 0.01) and RCC cell lines (P < 0.05) compared to adjacent non-neoplastic tissues and normal renal epithelial cells. In vitro, overexpression of miR-6838-5p enhanced cell proliferation and invasion in human RCC cell lines (ACHN and 786-O), which were detected by CCK-8, Transwell and Colony formation assays (P < 0.05), and knockdown of miR-6838-5p suppressed cell proliferation and invasion (P < 0.05). Results of Bioinformatics analysis combined with Dual-luciferase reporter gene assay demonstrated that miR-6838-5p could bind to Cyclin D binding myb-like transcription factor 1 (DMTF1). In addition, RT-qPCR and Western blotting confirmed that DMTF1 was downregulated in RCC tissues and cell lines. Meanwhile, it was demonstrated that overexpression of miR-6838-5p inhibited DMTF1 level in ACHN cells. Next, we confirmed that DMTF1 overexpression reversed the inhibitory effects of overexpression of miR-6838-5p on phosphatase and tensin homolog (PTEN), tumor protein 53(p53), murine double minute 2 (MDM2) and alternative reading frame (ARF) protein levels in the ARF-p53 signaling pathway. In conclusion, our research showed that miR-6838-5p enhanced the proliferation and invasion of RCC cells by inhibiting the DMTF1/ARF-p53 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

We thank all participants who participated in this study.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JZ designed the study. XQZ and YW drafted and wrote the manuscript. DZ and HCL collected and analyzed the data. TC and JZ contributed samples collection and intellectual input. JZ revised the manuscript critically for intellectual content. All authors gave intellectual input to the study and approved the final version of the manuscript.

Corresponding author

Correspondence to Jun Zhao.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Second Affiliated Hospital of Medical School, Xi’an Jiaotong University (Xi’an, China).

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Wu, Y., Zhang, D. et al. MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis. J Bioenerg Biomembr 53, 191–202 (2021). https://doi.org/10.1007/s10863-021-09888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-021-09888-2

Keywords

Navigation