Skip to main content
Log in

Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Andreyev AY, Bondareva TO, Dedukhova VI et al (1988) Carboxyatractylate inhibits the uncoupling effect of free fatty acids. FEBS Lett 226:265–269

    PubMed  Google Scholar 

  • Azbarova AV, Galkina KV, Sorokin MI, Severin FF, Knorre DA (2017) The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms. Sci Rep 7:13220

    PubMed  PubMed Central  Google Scholar 

  • Bazhenova EN, Deryabina YI, Eriksson O, Zvyagilskaya RA, Saris NEL (1998) Characterization of a high capacity calcium transport system in mitochondria of the yeast Endomyces magnusii. J Biol Chem 273:4372–4377

    PubMed  CAS  Google Scholar 

  • Beauvoit B, Rigoulet M, Raffard G, Canioni P, Guerin B (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry 30:11212–11220

    PubMed  CAS  Google Scholar 

  • Benz R, McLaughlin S (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J 41:381–398

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bollenbach T (2015) Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr Opin Microbiol 27:1–9

    PubMed  CAS  Google Scholar 

  • Cadek R, Chládková K, Sigler K, Gásková D (2004) Impact of the growth phase on the activity of multidrug resistance pumps and membrane potential of S. cerevisiae: effect of pump overproduction and carbon source. Biochim Biophys Acta 1665:111–117

    PubMed  CAS  Google Scholar 

  • Celaj A, Gebbia M, Musa L, et al (2020) Highly combinatorial genetic interaction analysis reveals a multi-drug transporter influence network. Cell Syst 10:25–38.e10

  • Centers for Disease Control and Prevention (U.S.) (2019) Antibiotic resistance threats in the United States, 2019. National Center for Emerging Zoonotic and Infectious Diseases (U.S.)

  • Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:544

    PubMed  PubMed Central  Google Scholar 

  • Decottignies A, Kolaczkowski M, Balzi E, Goffeau A (1994) Solubilization and characterization of the overexpressed PDR5 multidrug resistance nucleotide triphosphatase of yeast. J Biol Chem 269:12797–12803

    PubMed  CAS  Google Scholar 

  • Epstein CB, Waddle JA, Hale W 4th et al (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, Garcia M, Tanty V, le Crom S, Jacq C, Devaux F (2007) The central role of PDR1 in the foundation of yeast drug resistance. J Biol Chem 282:5063–5074

    PubMed  CAS  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742

    PubMed  CAS  Google Scholar 

  • Franz R, Ruhnke M, Morschhäuser J (1999) Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses 42:453–458

    PubMed  CAS  Google Scholar 

  • Galkina KV, Besedina EG, Zinovkin RA, Severin FF, Knorre DA (2018) Penetrating cations induce pleiotropic drug resistance in yeast. Sci Rep 8:8131

    PubMed  PubMed Central  Google Scholar 

  • Galkina KV, Okamoto M, Chibana H et al (2019) Deletion of CDR1 reveals redox regulation of pleiotropic drug resistance in Candida glabrata. Biochimie 170:49–56

    PubMed  Google Scholar 

  • Garcia C, Burgain A, Chaillot J, Pic É, Khemiri I, Sellam A (2018) A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci Rep 8:11559

    PubMed  PubMed Central  Google Scholar 

  • Grossmann G, Opekarová M, Malinsky J, Weig-Meckl I, Tanner W (2007) Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 26:1–8

    PubMed  CAS  Google Scholar 

  • Gupta RP, Kueppers P, Schmitt L, Ernst R (2011) The multidrug transporter Pdr5: a molecular diode? Biol Chem 392:53–60

    PubMed  CAS  Google Scholar 

  • Hallstrom TC, Moye-Rowley WS (2000) Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275:37347–37356

    PubMed  CAS  Google Scholar 

  • Hendrych T, Kodedová M, Sigler K, Gásková D (2009) Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. Biochim Biophys Acta 1788:717–723

    PubMed  CAS  Google Scholar 

  • Hlavácek O, Kucerová H, Harant K et al (2009) Putative role for ABC multidrug exporters in yeast quorum sensing. FEBS Lett 583:1107–1113

    PubMed  Google Scholar 

  • Jungwirth H, Kuchler K (2006) Yeast ABC transporters-- a tale of sex, stress, drugs and aging. FEBS Lett 580:1131–1138

    PubMed  CAS  Google Scholar 

  • Karavaeva IE, Golyshev SA, Smirnova EA, Sokolov SS, Severin FF, Knorre DA (2017) Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA. J Cell Sci 130:1274–1284

    PubMed  CAS  Google Scholar 

  • Khakhina S, Johnson SS, Manoharlal R, Russo SB, Blugeon C, Lemoine S, Sunshine AB, Dunham MJ, Cowart LA, Devaux F, Moye-Rowley WS (2015) Control of plasma membrane permeability by ABC transporters. Eukaryot Cell 14:442–453

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kodedová M, Sychrová H (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS One 10:e0139306

    PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska A, Kolaczkowski M, Goffeau A, Moye-Rowley WS (2008) Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae. FEBS Lett 582:977–983

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kolaczkowski M, Kolaczowska A, Luczynski J et al (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    PubMed  CAS  Google Scholar 

  • Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowska A et al (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271:31543–31548

    PubMed  CAS  Google Scholar 

  • Kontoyiannis DP (2000) Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 46:191–197

    PubMed  CAS  Google Scholar 

  • Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144

    PubMed  CAS  Google Scholar 

  • Krasowska A, Łukaszewicz M, Bartosiewicz D, Sigler K (2010) Cell ATP level of Saccharomyces cerevisiae sensitively responds to culture growth and drug-inflicted variations in membrane integrity and PDR pump activity. Biochem Biophys Res Commun 395:51–55

    PubMed  CAS  Google Scholar 

  • Lai L-C, Kissinger MT, Burke PV, Kwast KE (2008) Comparison of the transcriptomic “stress response” evoked by antimycin a and oxygen deprivation in Saccharomyces cerevisiae. BMC Genomics 9:627

    PubMed  PubMed Central  Google Scholar 

  • Leblanc OH Jr (1971) The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone. J Membr Biol 4:227–251

    PubMed  CAS  Google Scholar 

  • Lewis K, Naroditskaya V, Ferrante A, Fokina I (1994) Bacterial resistance to uncouplers. J Bioenerg Biomembr 26:639–646

    PubMed  CAS  Google Scholar 

  • Mamnun YM, Schüller C, Kuchler K (2004) Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett 559:111–117

    PubMed  CAS  Google Scholar 

  • Meletiadis J, Verweij PE, TeDorsthorst DTA et al (2005) Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models. Med Mycol 43:133–152

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Gulf Professional Publishing

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1

    PubMed  CAS  Google Scholar 

  • Panwar SL, Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 281:6376–6384

    PubMed  CAS  Google Scholar 

  • Panwar SL, Pasrija R, Prasad R (2008) Membrane homoeostasis and multidrug resistance in yeast. Biosci Rep 28:217–228

    PubMed  CAS  Google Scholar 

  • Pasrija R, Panwar SL, Prasad R (2008) Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52:694–704

    PubMed  CAS  Google Scholar 

  • Pereira MBP, Tisi R, Fietto LG, Cardoso AS, França MM, Carvalho FM, Trópia MJM, Martegani E, Castro IM, Brandão RL (2008) Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:622–630

    PubMed  CAS  Google Scholar 

  • Plášek J, Babuka D, Hoefer M (2017) H+ translocation by weak acid uncouplers is independent of H+ electrochemical gradient. J Bioenerg Biomembr 49:391–397

    PubMed  Google Scholar 

  • Popp C, Hampe IAI, Hertlein T, Ohlsen K, Rogers PD, Morschhäuser J (2017) Competitive fitness of fluconazole-resistant clinical Candida albicans strains. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.00584-17

  • Prunuske AJ, Waltner JK, Kuhn P, Gu B, Craig EA (2012) Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1. Proc Natl Acad Sci U S A 109:472–477

    PubMed  CAS  Google Scholar 

  • Rahman H, Carneglia J, Lausten M, et al (2018) Robust, pleiotropic drug resistance 5 (Pdr5)-mediated multidrug resistance is vigorously maintained in Saccharomyces cerevisiae cells during glucose and nitrogen limitation. FEMS yeast res 18.: https://doi.org/10.1093/femsyr/foy029

  • Rank GH, Robertson A, Phillips K (1975) Reduced plasma membrane permeability in a multiple cross-resistant strain of Saccharomyces cerevisiae. J Bacteriol 122:359–366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roope LSJ, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, Butler CC, Tan PS, Walker AS, Robotham JV, Wordsworth S (2019) The challenge of antimicrobial resistance: what economics can contribute. Science 364:eaau4679. https://doi.org/10.1126/science.aau4679

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Zhang L, Zhang Y, Chelluri R, Boufraqech M, Nilubol N, Patel D, Shen M, Kebebew E (2016) Identification of Niclosamide as a novel anticancer agent for adrenocortical carcinoma. Clin Cancer Res 22:3458–3466

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    PubMed  CAS  Google Scholar 

  • Sokolov SS, Vorobeva MA, Smirnova AI, Smirnova EA, Trushina NI, Galkina KV, Severin FF, Knorre DA (2020) LAM genes contribute to environmental stress tolerance but Sensibilize yeast cells to azoles. Front Microbiol 11:38

    PubMed  PubMed Central  Google Scholar 

  • Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, Frueh DP, Gulshan K, Li DK, Mylonakis E, Struhl K, Moye-Rowley WS, Cormack BP, Wagner G, Näär AM (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452:604–609

    PubMed  CAS  Google Scholar 

  • Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Boeckel TP, Pires J, Silvester R et al (2019) Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365. https://doi.org/10.1126/science.aaw1944

  • Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC transporter genes show Upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-binding cassette (ABC) transporter genes. Front Microbiol 10:1445

    PubMed  PubMed Central  Google Scholar 

  • Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, TCW J, Kouznetsova J, Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM, Goate A, Brennand KJ, Huang R, Xia M, Ming GL, Zheng W, Song H, Tang H (2016) Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22:1101–1107

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M-R, Zhao F, Wang S, Lv S, Mou Y, Yao CL, Zhou Y, Li FQ (2020) Molecular mechanism of azoles resistant Candida albicans in a patient with chronic mucocutaneous candidiasis. BMC Infect Dis 20:126

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Moye-Rowley WS (2001) Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F(0) component of the mitochondrial ATPase. J Biol Chem 276:47844–47852

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Chudakova for the immense help with the shaping of the manuscript text and style editing. We are also grateful to Prof. Antonenko for his advice about references on protonophores diffusion studies and to Dr. Galkin who helped us to recover some essential data from the laboratory during the lockdown period.

Funding

The study was supported by RFBR grant 18–54-45,001 IND-A. This work was also supported by Moscow State University Grant for Leading Scientific Schools «Depository of the Living Systems» in the frame of MSU Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Knorre.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkina, K.V., Finkelberg, J.M., Markova, O.V. et al. Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells. J Bioenerg Biomembr 52, 383–395 (2020). https://doi.org/10.1007/s10863-020-09849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-020-09849-1

Keywords

Navigation