Skip to main content
Log in

Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The present study was designed to evaluate the radioprotective effect of diethylcarbamazine (DEC) against oxidative stress and acute lung injury induced by total body radiation (TBI) in mice. For study the optimum dose for radiation protection of DEC, mice were administrated with three dose of DEC (10, 50 and 100 mg/kg), once daily for eight consecutive days. Animals were exposed whole body to 5 Gy X-radiation on the 9 day. The radioprotective potential of DEC in lung tissues was assessed using oxidative stress examinations at 24 h after TBI and histopathological assay also was analyzed one week after TBI. Results from biochemical analyses demonstrated increased malonyldialdehyde (MDA), nitric oxide (NO) and protein carbonyl (PC) levels of lung tissues in only irradiated group. Histopathologic findings also showed an increase in the number of inflammatory cells and the acute lung injury in this group. DEC pretreatment significantly mitigated the oxidative stress biomarkers as well as histological damages in irradiated mice. The favorable radioprotective effect against lungs injury was observed at a dose of 10 mg/kg of DEC in mice as compared with two other doses (50 and 100 mg/kg). The data of this study showed that DEC at a dose of 10 mg/kg with having antioxidant and anti-inflammatory properties can be used as a therapeutic candidate for protecting the lung from radiation-induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abratt RP, Morgan GW (2002) Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 35(2):103–109

    Article  Google Scholar 

  • Almeida C, Nagarajan D, Tian J, Leal SW, Wheeler K, Munley M, Blackstock W, Zhao W (2013) The role of alveolar epithelium in radiation-induced lung injury. PLoS One 8(1):e53628. https://doi.org/10.1371/journal.pone.0053628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Y, Calaf G, Zhou H, Ghandhi S, Elliston C, Wen G et al (2013) Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 108(1):91

    Article  CAS  Google Scholar 

  • Chen C, Yang S, Zhang M, Zhang Z, Hong J, Han D et al (2016) Triptolide mitigates radiation-induced pulmonary fibrosis via inhibition of axis of alveolar macrophages-NOXes-ROS-myofibroblasts. Cancer Biology & Therapy 17(4):381–389

    Article  CAS  Google Scholar 

  • Chung SI, Horton JA, Ramalingam TR, White AO, Chung EJ, Hudak KE et al (2016) IL-13 is a therapeutic target in radiation lung injury. Sci Rep 6:39714

    Article  CAS  Google Scholar 

  • Collie D, Murchison JT, Wright SH, McLean A, Howard L, del Pozo J et al (2018) Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model. Sci Rep 8(1):13316

    Article  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    Article  CAS  Google Scholar 

  • El AE-DE-S, Sokar SS, Shebl AM, Mohamed DZ (2017) Antifibrotic effect of diethylcarbamazine combined with hesperidin against ethanol induced liver fibrosis in rats. Biomed Pharmacother 89:1196–1206

    Article  Google Scholar 

  • Florêncio M, Saraiva K, Peixoto C (2005) The effects of diethylcarbamazine on the ultrastructure of lung cells in vivo. Tissue Cell 37(3):241–246

    Article  Google Scholar 

  • Fragoso IT, Ribeiro EL, Gomes FO, Donato MA, Silva AK, Oliveira AC et al (2017) Diethylcarbamazine attenuates LPS-induced acute lung injury in mice by apoptosis of inflammatory cells. Pharmacol Rep 69(1):81–89. https://doi.org/10.1016/j.pharep.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  • Ghai D, Gulati M, Singh SK (2017) Herbal formulation for anthelmintic activity: design and evaluation. Lovely Professional University

  • Giaid A, Lehnert SM, Chehayeb B, Chehayeb D, Kaplan I, Shenouda G (2003) Inducible nitric oxide synthase and nitrotyrosine in mice with radiation-induced lung damage. Am J Clin Oncol 26(4):e67–e72. https://doi.org/10.1097/01.COC.0000077940.05196.86

    Article  PubMed  Google Scholar 

  • Gong HY, Hu WG, Hu QY, Li XP, Song QB (2015) Radiation-induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer. Oncol Lett 10(6):3613–3618. https://doi.org/10.3892/ol.2015.3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinimehr SJ, Zakaryaee V, Froughizadeh M (2006) Oral oxymetholone reduces mortality induced by gamma irradiation in mice through stimulation of hematopoietic cells. Mol Cell Biochem 287(1–2):193–199. https://doi.org/10.1007/s11010-005-9111-5

    Article  CAS  PubMed  Google Scholar 

  • Hosseinimehr SJ, Ahmadi A, Beiki D, Habibi E, Mahmoudzadeh A (2009) Protective effects of hesperidin against genotoxicity induced by (99m)Tc-MIBI in human cultured lymphocyte cells. Nucl Med Biol 36(7):863–867. https://doi.org/10.1016/j.nucmedbio.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  • Hosseinimehr SJ, Nobakht R, Ghasemi A, Pourfallah TA (2015) Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat Oncol J 33(3):256–260. https://doi.org/10.3857/roj.2015.33.3.256

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA (2013) Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib. Int J Radiat Oncol Biol Phys 85(2):472–476. https://doi.org/10.1016/j.ijrobp.2012.04.025

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Zao M, Liu X (2017) Protective effect of diethylcarbamazine inhibits NF-κB activation in isoproterenol-induced acute myocardial infarction rat model through the PARP pathway. Mol Med Rep 16(2):1596–1602

    Article  CAS  Google Scholar 

  • Johnston CJ, Manning C, Hernady E, Reed C, Thurston SW, Finkelstein JN, Williams JP (2011) Effect of total body irradiation on late lung effects: hidden dangers. Int J Radiat Biol 87(8):902–913. https://doi.org/10.3109/09553002.2011.573439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiiska MB, Basu S, Brot N, Cooper C, Csallany AS, Davies MJ et al (2013) Biomarkers of oxidative stress study V: ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine. Free Radic Biol Med 61:408–415

    Article  CAS  Google Scholar 

  • Kamat JP, Ghosh A, Devasagayam TP (2000) Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol Cell Biochem 209(1–2):47–53

    Article  CAS  Google Scholar 

  • Kumar S, Tiku AB (2016) Biochemical and molecular mechanisms of Radioprotective effects of Naringenin, a phytochemical from Citrus fruits. J Agric Food Chem 64(8):1676–1685. https://doi.org/10.1021/acs.jafc.5b05067

    Article  CAS  PubMed  Google Scholar 

  • Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J et al (2010) Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9(3):398–409

    Article  CAS  Google Scholar 

  • Lee SY, Kim YJ, Kim YJ (2003) Role of crosslinked protein in lung injury following total body irradiation and bone marrow transplantation. Exp Mol Med 35(6):565–571. https://doi.org/10.1038/emm.2003.74

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu G, Qiao T, Yuan S, Zhuang X (2016) Effects of CpG oligodeoxynucleotide 1826 on acute radiation-induced lung injury in mice. Biol Res 49(1):8

    Article  Google Scholar 

  • Molteni A, Moulder JE, Cohen EF, Ward WF, Fish BL, Taylor JM, Wolfe LF, Brizio-Molteni L, Veno P (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76(4):523–532

    Article  CAS  Google Scholar 

  • Naeimi RA, Talebpour Amiri F, Khalatbary AR, Ghasemi A, Zargari M, Ghesemi M, Hosseinimehr SJ (2017) Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod Toxicol 72:115–121. https://doi.org/10.1016/j.reprotox.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  • Nozaki Y, Hasegawa Y, Takeuchi A, Fan Z, Isobe K, Nakashima I et al (1997) Nitric oxide as an inflammatory mediator of radiation pneumonitis in rats. American Journal of Physiology: Lung Cellular and Molecular Physiology 272(4):L651–L658

    CAS  Google Scholar 

  • Ozturk B, Egehan I, Atavci S, Kitapci M (2004) Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys 58(1):213–219

    Article  CAS  Google Scholar 

  • Panganiban RA, Mungunsukh O, Day RM (2013) X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol 89(8):656–667. https://doi.org/10.3109/09553002.2012.711502

    Article  CAS  PubMed  Google Scholar 

  • Peixoto CA, Silva BS (2014) Anti-inflammatory effects of diethylcarbamazine: a review. Eur J Pharmacol 734:35–41

    Article  CAS  Google Scholar 

  • Pordanjani SM, Hosseinimehr SJ (2016) The role of NF-kB inhibitors in cell response to radiation. Curr Med Chem 23(34):3951–3963. https://doi.org/10.2174/0929867323666160824162718

    Article  CAS  PubMed  Google Scholar 

  • Queto T, Xavier-Elsas P, Gardel MA, de Luca B, Barradas M, Masid D, E Silva PM, Peixoto CA, Vasconcelos ZM, Dias EP, Gaspar-Elsas MI (2010) Inducible nitric oxide synthase/CD95L-dependent suppression of pulmonary and bone marrow eosinophilia by diethylcarbamazine. Am J Respir Crit Care Med 181(5):429–437

    Article  CAS  Google Scholar 

  • Ribeiro EL, Barbosa KPDS, Fragoso IT, Donato MAM, dos Santos Gomes FO, da Silva BS et al (2014) Diethylcarbamazine attenuates the development of Carrageenan-induced lung injury in mice. Mediators of Inflammation. https://doi.org/10.1155/2014/105120

    Article  Google Scholar 

  • Rocha SWS, França MERD, Rodrigues GB, Barbosa, KPS, Nunes AKS, Pastor AF et al (2014) Diethylcarbamazine reduces chronic inflammation and fibrosis in carbon tetrachloride-(CCl4-) induced liver injury in mice. Mediators of Inflammation. https://doi.org/10.1155/2014/696383

    Article  Google Scholar 

  • Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A et al (2000) Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 47(4):1033–1042

    Article  CAS  Google Scholar 

  • Ruia S, Saxena S, Prasad S, Sharma SR, Akduman L, Khanna VK (2016) Correlation of biomarkers thiobarbituric acid reactive substance, nitric oxide and central subfield and cube average thickness in diabetic retinopathy: a cross-sectional study. International Journal of Retina and Vitreous 2(1):8

    Article  Google Scholar 

  • Salehifar E, Hosseinimehr SJ (2016) The use of cyclooxygenase-2 inhibitors for improvement of efficacy of radiotherapy in cancers. Drug Discov Today 21(4):654–662. https://doi.org/10.1016/j.drudis.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  • Santos Rocha SW, Silva BS, Gomes FO, Soares e Silva AK, Raposo C, Barbosa KP et al (2012) Effect of diethylcarbamazine on chronic hepatic inflammation induced by alcohol in C57BL/6 mice. Eur J Pharmacol 689(1–3):194–203. https://doi.org/10.1016/j.ejphar.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  • Santos LAM, Ribeiro EL, Barbosa KPS, Fragoso IT, dos Santos Gomes FO, Donato MAM et al (2014) Diethylcarbamazine inhibits NF-κB activation in acute lung injury induced by carrageenan in mice. Int Immunopharmacol 23(1):153–162

    Article  CAS  Google Scholar 

  • Shaki F, Ashari S, Ahangar N (2016) Melatonin can attenuate ciprofloxacin induced nephrotoxicity: involvement of nitric oxide and TNF-alpha. Biomed Pharmacother 84:1172–1178. https://doi.org/10.1016/j.biopha.2016.10.053

    Article  CAS  PubMed  Google Scholar 

  • Shokrzadeh M, Zamani E, Mehrzad M, Norian Y, Shaki F (2015) Protective effects of Propofol against methamphetamine-induced neurotoxicity. Toxicol Int 22(1):92–99. https://doi.org/10.4103/0971-6580.172250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector T (1978) Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem 86(1):142–146

    Article  CAS  Google Scholar 

  • Tahamtan R, Shabestani Monfared A, Tahamtani Y, Tavassoli A, Akmali M, Mosleh-Shirazi MA et al (2015) Radioprotective effect of melatonin on radiation-induced lung injury and lipid peroxidation in rats. Cell J 17(1):111–120

    PubMed  PubMed Central  Google Scholar 

  • Verma YK, Gangenahalli G (2017) Data mining for drug repurposing and new targets identification for radioprotection. Defence Life Science Journal 2(3):343–353

    Article  Google Scholar 

  • Vujaskovic Z, Marks LB, Anscher MS (2000) The physical parameters and molecular events associated with radiation-induced lung toxicity. Semin Radiat Oncol 10(4):296–307

    Article  CAS  Google Scholar 

  • Wilson AF, McPhillips JJ (1978) Pharmacological control of asthma. Annu Rev Pharmacol Toxicol 18(1):541–561. https://doi.org/10.1146/annurev.pa.18.040178.002545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mazandaran University of Medical Sciences, Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jalal Hosseinimehr.

Ethics declarations

Conflict of interest

The authors confirmed that this article content has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzipour, S., Amiri, F.T., Mihandoust, E. et al. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J Bioenerg Biomembr 52, 39–46 (2020). https://doi.org/10.1007/s10863-019-09820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-019-09820-9

Keywords

Navigation