Journal of Bioenergetics and Biomembranes

, Volume 51, Issue 1, pp 65–75 | Cite as

Strength in diversity: functional diversity among olfactory neurons of the same type

  • Eryn Slankster
  • Seth R. Odell
  • Dennis MathewEmail author


Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal’s olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.


Olfaction Neuronal diversity Olfactory receptor neurons Interneuron Mitral cell Projection neuron 



The authors are supported by a grant from the NIGMS of the National Institute of Health under grant number P20 GM103650 and by startup funds from the University of Nevada, Reno awarded to DM.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. Adesnik H, Br uns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490:226–231Google Scholar
  2. Arneodo EM, Penikis KB, Rabinowitz N, Licata A, Cichy A, Zhang J, Bozza T, Rinberg D (2018) Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit. Nat Commun 9:1347Google Scholar
  3. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TTB, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3Google Scholar
  4. Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170Google Scholar
  5. Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel ADT, Cardona A (2016) The wiring diagram of a glomerular olfactory system. eLife 5Google Scholar
  6. Bhalerao S, Sen A, Stocker R, Rodrigues V (2003) Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogaster. J Neurobiol 54:577–592Google Scholar
  7. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21Google Scholar
  8. Boeckh J, Ernst KD, Selsam P (1987) Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach. Ann N Y Acad Sci 510:39–43Google Scholar
  9. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043Google Scholar
  10. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187Google Scholar
  11. Carlson JR (1996) Olfaction in Drosophila: from odor to behavior. Trends Genet 12:175–180Google Scholar
  12. Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70Google Scholar
  13. Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R (2011) Driving opposing behaviors with ensembles of piriform neurons. Cell 146:1003–1014Google Scholar
  14. Chou YH, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449Google Scholar
  15. Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information-processing in the olfactory glomeruli of the moth Manduca-Sexta. J Comp Physiol A 173:385–399Google Scholar
  16. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338Google Scholar
  17. Couto A, Alenius M, Dickson B (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol : CB 15:1535–1547Google Scholar
  18. Dalton RP, Lomvardas S (2015) Chemosensory receptor specificity and regulation. Annu Rev Neurosci 38(38):331–349Google Scholar
  19. Dhawale AK, Hagiwara A, Bhalla US, Murthy VN, Albeanu DF (2010) Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat Neurosci 13:1404–U1183Google Scholar
  20. Endo K, Aoki T, Yoda Y, Kimura KI, Hama C (2007) Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci 10:153–160Google Scholar
  21. Endo K, Karim MR, Taniguchi H, Krejci A, Kinameri E, Siebert M, Ito K, Bray SJ, Moore AW (2012) Chromatin modification of notch targets in olfactory receptor neuron diversification. Nat Neurosci 15:224–233Google Scholar
  22. Fisek M, Wilson RI (2014) Stereotyped connectivity and computations in higher-order olfactory neurons. Nat Neurosci 17:280–288Google Scholar
  23. Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol : CB 15:1548–1553Google Scholar
  24. Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol : CB 15:2086–2096Google Scholar
  25. Friedrich RW, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894Google Scholar
  26. Gerber B, Scherer S, Neuser K, Michels B, Hendel T, Stocker RF, Heisenberg M (2004) Visual learning in individually assayed Drosophila larvae. J Exp Biol 207:179–188Google Scholar
  27. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 101:2156–2161Google Scholar
  28. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87:1129–1131Google Scholar
  29. Gomez-Marin A, Louis M (2014) Multilevel control of run orientation in Drosophila larval chemotaxis. Front Behav Neurosci 8:38Google Scholar
  30. Gomez-Marin A, Stephens GJ, Louis M (2011) Active sampling and decision making in Drosophila chemotaxis. Nat Commun 2:441Google Scholar
  31. Grabe V, Baschwitz A, Dweck HKM, Lavista-Llanos S, Hansson BS, Sachse S (2016) Elucidating the neuronal architecture of olfactory glomeruli in the Drosophila antennal lobe. Cell Rep 16:3401–3413Google Scholar
  32. Guo H, Kunwar K, Smith D (2017) Odorant receptor sensitivity modulation in Drosophila. J Neurosci 37:9465–9473Google Scholar
  33. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160Google Scholar
  34. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979Google Scholar
  35. Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:15336–15341Google Scholar
  36. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318Google Scholar
  37. Hernandez-Nunez L, Belina J, Klein M, Si G, Claus L, Carlson JR, Samuel AD (2015) Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics. eLife 4Google Scholar
  38. Hige T, Aso Y, Rubin GM, Turner GC (2015) Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature 526:258–262Google Scholar
  39. Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501Google Scholar
  40. Howell K, Hobert O (2017) Morphological diversity of C. elegans sensory cilia instructed by the differential expression of an immunoglobulin domain protein. Curr Biol 27:1782–1790.e5Google Scholar
  41. Huang J, Zhang W, Qiao WH, Hu AQ, Wang ZR (2010) Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron 67:1021–1033Google Scholar
  42. Jones SV, Choi DC, Davis M, Ressler KJ (2008) Learning-dependent structural plasticity in the adult olfactory pathway. J Neurosci 28:13106–13111Google Scholar
  43. Kaissling KE (2013) Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A 199:879–896Google Scholar
  44. Kato A, Touhara K (2009) Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci 66:3743–3753Google Scholar
  45. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200Google Scholar
  46. Kay RB, Brunjes PC (2014) Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci 8Google Scholar
  47. Kenakin T (2017) Theoretical aspects of GPCR-ligand complex pharmacology. Chem Rev 117:4–20Google Scholar
  48. Kidd S, Lieber T (2016) Mechanism of notch pathway activation and its role in the regulation of olfactory plasticity in Drosophila melanogaster. PLoS One 11:e0151279Google Scholar
  49. Kidd S, Struhl G, Lieber T (2015) Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet 11:e1005244Google Scholar
  50. Kikuta S, Fletcher ML, Homma R, Yamasoba T, Nagayama S (2013) Odorant response properties of individual neurons in an olfactory glomerular module. Neuron 77:1122–1135Google Scholar
  51. Kim K, Kim JH, Song YH, Lee SH (2017) Functional dissection of inhibitory microcircuits in the visual cortex. Neurosci Res 116:70–76Google Scholar
  52. Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456Google Scholar
  53. Kreher SA, Mathew D, Kim J, Carlson JR (2008) Translation of sensory input into behavioral output via an olfactory system. Neuron 59:110–124Google Scholar
  54. Larter NK, Sun JS, Carlson JR (2016) Organization and function of Drosophila odorant binding proteins. eLife 5Google Scholar
  55. Laurent G (1996) Odor images and tunes. Neuron 16:473–476Google Scholar
  56. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HD (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297Google Scholar
  57. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383Google Scholar
  58. Li QY, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC (2013) Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 23:2481–2490Google Scholar
  59. Li QY, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC (2016) A functionally conserved gene regulatory network module governing olfactory neuron diversity. PLoS Genet 12:e1005780Google Scholar
  60. Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 18:346–353Google Scholar
  61. Lieber T, Kidd S, Struhl G (2011) DSL-notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69:468–481Google Scholar
  62. Lin D, Katz LC (2006) Representation of natural stimuli in the rodent main olfactory bulb. Chem Senses 31:A2–A2Google Scholar
  63. Liou NF et al (2018) Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit. Nat Commun 9Google Scholar
  64. Liu AN, Urban NN (2017) Prenatal and early postnatal odorant exposure heightens odor-evoked mitral cell responses in the mouse olfactory bulb. Eneuro 4:ENEURO.0129–ENEU17.2017Google Scholar
  65. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366Google Scholar
  66. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723Google Scholar
  67. Manzini I, Korsching S (2011) The peripheral olfactory system of vertebrates: molecular, structural and functional basics of the sense of smell. Neuroforum 17:110–118Google Scholar
  68. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807Google Scholar
  69. Martelli C, Carlson JR, Emonet T (2013) Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J Neurosci 33:6285–6297Google Scholar
  70. Masse NY, Turner GC, Jefferis GS (2009) Olfactory information processing in Drosophila. Curr Biol: CB 19:R700–R713Google Scholar
  71. Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M, Samuel ADT, Emonet T, Carlson JR (2013) Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc Natl Acad Sci U S A 110:E2134–E2143Google Scholar
  72. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768Google Scholar
  73. Miles R (2000) Neurobiology - diversity in inhibition. Science 287:244–246Google Scholar
  74. Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R, Eddy SR, Ecker JR, Nathans J (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384Google Scholar
  75. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278Google Scholar
  76. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686Google Scholar
  77. Montague SA, Mathew D, Carlson JR (2011) Similar odorants elicit different behavioral and physiological responses, some supersustained. J Neurosci 31:7891–7899Google Scholar
  78. Munch D, Galizia CG (2017) Take time: odor coding capacity across sensory neurons increases over time in Drosophila. J Comp Physiol A 203:959–972Google Scholar
  79. Nagel KI, Wilson RI (2011) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 14:208–U296Google Scholar
  80. Nagel KI, Wilson RI (2016) Mechanisms underlying population response dynamics in inhibitory interneurons of the Drosophila antennal lobe. J Neurosci 36:4325–4338Google Scholar
  81. Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292Google Scholar
  82. Olsen SR, Bhandawat V, Wilson RI (2010) Divisive normalization in olfactory population codes. Neuron 66:287–299Google Scholar
  83. Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 13:1276–1282Google Scholar
  84. Parnas M, Lin AC, Huetteroth W, Miesenbock G (2013) Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 79:932–944Google Scholar
  85. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352Google Scholar
  86. Raja JSI, Katanayeva N, Katanaev VL, Galizia CG (2014) Role of G(o/i) subgroup of G proteins in olfactory signaling of Drosophila melanogaster. Eur J Neurosci 39:1245–1255Google Scholar
  87. Ray A, van Naters WG, Shiraiwa T, Carlson JR (2007) Mechanisms of odor receptor gene choice in Drosophila. Neuron 53:353–369Google Scholar
  88. Ray A, van Naters WV, Carlson JR (2008) A regulatory code for neuron-specific odor receptor expression. PLoS Biol 6:1069–1083Google Scholar
  89. Ribich S, Tasic B, Maniatis T (2006) Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 103:19719–19724Google Scholar
  90. Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321Google Scholar
  91. Root CM, Denny CA, Hen R, Axel R (2014) The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515:269–U274Google Scholar
  92. Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850Google Scholar
  93. Saito H, Chi QY, Zhuang HY, Matsunami H, Mainland J (2009) Odor coding by a mammalian receptor repertoire. Neurosci Res 65:S76–S76Google Scholar
  94. Sakano H (2010) Neural map formation in the mouse olfactory system. Neuron 67:530–542Google Scholar
  95. Santoro SW, Dulac C (2012) The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife 1Google Scholar
  96. Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006Google Scholar
  97. Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143–3154Google Scholar
  98. Schneider D (1969) Insect olfaction: deciphering system for chemical messages. Science 163:1031–1037Google Scholar
  99. Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9:356–362Google Scholar
  100. Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS (2010) Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J Neurophysiol 104:1007–1019Google Scholar
  101. Seki Y, Dweck HKM, Rybak J, Wicher D, Sachse S, Hansson BS (2017) Olfactory coding from the periphery to higher brain centers in the Drosophila brain. BMC Biol 15:56Google Scholar
  102. Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenbock G (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612Google Scholar
  103. Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design. EMBO Rep 11:173–179Google Scholar
  104. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780Google Scholar
  105. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR (2011) Distinct representations of olfactory information in different cortical centres. Nature 472:213–216Google Scholar
  106. Stanczyk NM, Brookfield JFY, Field LM, Logan JG (2013) Aedes aegypti mosquitoes exhibit decreased repellency by DEET following previous exposure. PLoS One 8:e54438Google Scholar
  107. Stiefel KM, Englitz B, Sejnowski TJ (2013) Origin of intrinsic irregular firing in cortical interneurons. Proc Natl Acad Sci U S A 110:7886–7891Google Scholar
  108. Stocker R (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26Google Scholar
  109. Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34Google Scholar
  110. Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59Google Scholar
  111. Tanaka NK, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol : CB 14:449–457Google Scholar
  112. Tanaka NK, Tanimoto H, Ito K (2008) Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508:711–755Google Scholar
  113. Taylor AL, Goaillard JM, Marder E (2009) How multiple Conductances determine electrophysiological properties in a multicompartment model. J Neurosci 29:5573–5586Google Scholar
  114. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82Google Scholar
  115. Tobin WF, Wilson RI, Lee WCA (2017) Wiring variations that enable and constrain neural computation in a sensory microcircuit. eLife 6Google Scholar
  116. Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91Google Scholar
  117. Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937Google Scholar
  118. Vosshall LB (2000) Olfaction in Drosophila. Curr Opin Neurobiol 10:498–503Google Scholar
  119. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533Google Scholar
  120. Wachowiak M, Shipley MT (2006) Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 17:411–423Google Scholar
  121. Wang F, Nemes A, Mendelsohn M, Axel R (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93:47–60Google Scholar
  122. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282Google Scholar
  123. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011Google Scholar
  124. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079Google Scholar
  125. Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Annu Rev Neurosci 29:163–201Google Scholar
  126. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370Google Scholar
  127. Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696Google Scholar
  128. Xia YF, Wang GR, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ (2008) The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc Natl Acad Sci U S A 105:6433–6438Google Scholar
  129. Xu PS, Lee D, Holy TE (2016) Experience-dependent plasticity drives individual differences in pheromone-sensing neurons. Neuron 91:878–892Google Scholar
  130. Yagi T (2013) Genetic basis of neuronal individuality in the mammalian brain. J Neurogenet 27:97–105Google Scholar
  131. Yao CA, Carlson JR (2010) Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila. J Neurosci 30:4562–4572Google Scholar
  132. Zhao HQ, Reed RR (2001) X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104:651–660Google Scholar
  133. Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of NevadaRenoUSA
  2. 2.Integrated Neuroscience ProgramUniversity of NevadaRenoUSA

Personalised recommendations