Mitochondrial morphology and function impaired by dimethyl sulfoxide and dimethyl Formamide

Article

Abstract

In this work, the effects of two non-ionic, non-hydroxyl organic solvents, dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) on the morphology and function of isolated rat hepatic mitochondria were investigated and compared. Mitochondrial ultrastructures impaired by DMSO and DMF were clearly observed by transmission electron microscopy. Spectroscopic and polarographic results demonstrated that organic solvents induced mitochondrial swelling, enhanced the permeation to H+/K+, collapsed the potential inner mitochondrial membrane (IMM), and increased the IMM fluidity. Moreover, with organic solvents addition, the outer mitochondrial membrane (OMM) was broken, accompanied with the release of Cytochrome c, which could activate cell apoptosis signaling pathway. The role of DMSO and DMF in enhancing permeation or transient water pore formation in the mitochondrial phospholipid bilayer might be the main reason for the mitochondrial morphology and function impaired. Mitochondrial dysfunctions induced by the two organic solvents were dose-dependent, but the extents varied. Ethanol (EtOH) showed the highest potential damage on the mitochondrial morphology and functions, followed by DMF and DMSO.

Keywords

Mitochondria Organic solvents Ultrastructure Permeabilization Transient water pore 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21463008, 21303126, 21573168, 21763005); the Foundation of State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2012-A10) and Guangxi Natural Science Foundation Program (No. 2012GXNSFBA053119).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6(5):225–234CrossRefGoogle Scholar
  2. Barry BW (2004) Breaching the skin's barrier to drugs. Nat Biotechnol 22(2):165–167CrossRefGoogle Scholar
  3. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267(5):2934–2939Google Scholar
  4. Chauret N, Gauthier A, Nicoll-Griffith DA (1998) Effect of common organic solvents on in vitro Cytochrome P450-mediated metabolic activities in human liver microsomes. Durg Metab DisposI 26(1):1–4.Google Scholar
  5. Crawford JM, Braunwald NS (1991) Toxicity in vital fluorescence microscopy: effect of dimethylsulfoxide, rhodamine-123, and DiI-low density lipoprotein on fibroblast growth in vitro. In Vitro Cell Dev Biol 27(8):633–638CrossRefGoogle Scholar
  6. Damjanovich S (1994) Mobility and proximity in biological membranes. CRC Press, Boca RatonGoogle Scholar
  7. Dong JX, Zhao GY, Yu QLY, Li R, Yuan L, Chen J, Liu Y (2013) Mitochondrial dysfunction induced by Honokiol. J Membr Biol 246(5):375–381CrossRefGoogle Scholar
  8. Dong P, Li JH, Xu SP, Wu XJ, Xiang X, Yang QQ, Jin JC, Liu Y, Jiang FL (2016) Mitochondrial dysfunction induced by ultrasmall silver nanoclusters with a distinct toxic mechanism. J Hazard Mater 308(5):139–148CrossRefGoogle Scholar
  9. Fan XY, Chen XY, Liu YJ, Zhong HM, Jiang FL, Liu Y (2016) Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. Sci Rep 6:29865CrossRefGoogle Scholar
  10. Forman S, Kas J, Fini F, Steinberg M, Ruml T (1999) The effect of different solvents on the ATP/ADP content and growth properties of HeLa cells. J Biochem Mol Toxicol 13(1):11–15CrossRefGoogle Scholar
  11. Frey TG, Renken CW, Perkins GA (2002) Insight into mitochondrial structure and function from electron tomography. Biochim Biophys Acta 1555(1):196–203CrossRefGoogle Scholar
  12. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF (2014) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 28(3):1317–1330CrossRefGoogle Scholar
  13. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13(9):1423–1433CrossRefGoogle Scholar
  14. Gottlieb RA (2001) Mitochondria and apoptosis. Biol Signals Recept 10(3–4):147–161CrossRefGoogle Scholar
  15. Gurtovenko AA, Anwar J (2007) Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 111(35):10453–10460CrossRefGoogle Scholar
  16. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont, JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10): 409–415Google Scholar
  17. Koh SB, Cha BS, Park JK, Chang SH, Chang SJ (2002) The metabolism and liver toxicity of N,N-dimethylformamide in the isolated perfused rat liver. Yonsei Med J 43(4):491–499CrossRefGoogle Scholar
  18. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B (2012) Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci 69(11):1787–1797CrossRefGoogle Scholar
  19. Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y (2015) Spectroscopic and microscopic studies on the mechanism of mitochondrial toxicity induced by CdTe QDs modified with different ligands. J Membr Biol 248(4):727–740CrossRefGoogle Scholar
  20. Li D, Han Y, Meng X, Sun X, Yu Q, Li Y, Wan L, Huo Y, Guo C (2010) Effect of regular organic solvents on cytochrome P450-mediated metabolic activities in rat liver microsomes. Drug Metab Dispos 38(11):1922–1925CrossRefGoogle Scholar
  21. Liu XR, Jia ZG, Chen JH (2017) Enhanced sampling of intrinsic structural heterogeneity of the BH3-only protein binding interface of Bcl-xL. J Phys Chem B 121(39):9160–9168CrossRefGoogle Scholar
  22. Liu XR, Li JH, Zhang Y, Ge YS, Tian FF, Dai J, Jiang FL, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of zinc. J Membr Biol 244(3):105–112CrossRefGoogle Scholar
  23. Lovett GS, Sweetman AJ (1983) The analysis of drug action on mitochondrial oxidative phosphorylation. The choice of organic solvent for water-insoluble drugs. Methods Find Exp Clin Pharmacol 5(10):695–699Google Scholar
  24. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8(2):115–128CrossRefGoogle Scholar
  25. Ma L, Dong JX, Wu C, Li XY, Chen J, Zhang H, Liu Y (2017) Spectroscopic, polarographic, and microcalorimetric studies on mitochondrial dysfunction induced by ethanol. J Membr Biol 250(2):195–204CrossRefGoogle Scholar
  26. Notman R, Noro M, O’Mally B, Anwar J (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128(43):13982–13983CrossRefGoogle Scholar
  27. Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787(5):345–350CrossRefGoogle Scholar
  28. O’Shea PS, Feuerstein-Thelen S, Azzi A (1984) Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles. Biochem J 220(3):795–801CrossRefGoogle Scholar
  29. Rendic S, Di CF (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29(1–2):413–580CrossRefGoogle Scholar
  30. Ricchelli F, Gobbo S, Moreno G, Salet C (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry 38(29):9295–9300CrossRefGoogle Scholar
  31. Ricchelli F, Jori G, Gobbo S, Nikolov P, Petronilli V (2005) Discrimination between two steps in the mitochondrial permeability transition process. Int J Biochem Cell Biol 37(9):1858–1868CrossRefGoogle Scholar
  32. Scalettar BA, Abney JR, Hackenbrock CR (1991) Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci 88(18):8057–8061CrossRefGoogle Scholar
  33. Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1(1):3–31CrossRefGoogle Scholar
  34. Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222Google Scholar
  35. Syed M, Skonberg C, Hansen SH (2013) Effect of organic solvents on oxidative phosphorylation in rat liver mitochondria: choice of organic solvents. Toxicol in Vitro 27(8):2135–2141CrossRefGoogle Scholar
  36. Tillement L, Lecanu L, Papadopoulos V (2011) Alzheimer's disease: effects of β-amyloid on mitochondria. Mitochondrion 11(1):13–21CrossRefGoogle Scholar
  37. Vuppugalla R, Chang SY, Zhang H, Marathe PH, Rodrigues DA (2007) Effect of commonly used organic solvents on the kinetics of cytochrome P450 2B6- and 2C8-dependent activity in human liver microsomes. Drug Metab Dispos 35(11):1990–1995CrossRefGoogle Scholar
  38. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618CrossRefGoogle Scholar
  39. Xiang X, Wu C, Zhang BR, Gao T, Zhao J, Ma L, Jiang FL, Liu Y (2017) The relationship between the length of surface ligand and effects of CdTe quantum dots on the physiological functions of isolated mitochondria. Chemosphere 184:1108–1116CrossRefGoogle Scholar
  40. Yang LY, Gao JL, Gao T, Dong P, Ma L, Jiang FL, Liu Y (2016) Toxicity of polyhydrolated fullerene to mitochondria. J Hazard Mater 301(15):119–126CrossRefGoogle Scholar
  41. Yarana C, Sripetchwandee J, Sanit J, Chattipakorn S, Chattipakorn N (2012) Calcium-induced cardiac mitochondrial dysfunction is predominantly mediated by cyclosporine A-dependent mitochondrial permeability transition pore. Arch Med Res 43(5):333–338CrossRefGoogle Scholar
  42. Yuan L, Gao T, He H, Jiang FL, Liu Y (2017) Silver ion-induced mitochondrial dysfunction via a nonspecific pathway. Toxicol Res 6(5):621–630CrossRefGoogle Scholar
  43. Zhao J, Ma L, Xiang X, Guo QL, Jiang FL, Liu Y (2016) Microcalorimetric studies on the energy release of isolated rat mitochondria under different concentrations of gadolinium (III). Chemosphere 153:414–418CrossRefGoogle Scholar
  44. Zhao J, Zhou ZQ, Jin JC, Yuan L, He H, Jiang FL, Yang XG, Dai J, Liu Y (2014) Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere 100(3):194–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilinPeople’s Republic of China
  3. 3.College of Life ScienceGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations