Skip to main content
Log in

Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

FOXO transcription factors are evolutionally conserved regulators of organismal life span downstream of insulin signaling. After integrating cellular signals from various stimuli such as growth factors, oxidative stress, and energy deprivation, FOXO factors induce expression of a specific set of genes that regulate various cellular processes to maintain homeostasis at a cellular or organismal level. In this review, we discuss roles of FOXO proteins in the maintenance of mitochondria, organelles critical for cellular quality control. FOXO factors protect mitochondria by activating mitochondrial antioxidant enzymes and they help remodel damaged mitochondria by inducing remodeling processes such as mitophagy. Furthermore, we also review the recently identified FOXO-dependent retrograde signaling from stressed mitochondria to the nucleus, which suggest that FOXO mediates the crosstalk between these two important organelles to maintain cell homeostasis. In addition, we introduce a mitohormetic role of gamitrinib-triphenylphosphonium (G-TPP), a mitochondrial heat shock protein (Hsp) inhibitor that can induce mild mitochondrial stress to protect cells from future insults in a FOXO-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnould T, Michel S, Renard P (2015) Mitochondria retrograde signaling and the UPR mt: where are we in mammals? Int J Mol Sci 16:18224–18251. doi:10.3390/ijms160818224

    Article  CAS  Google Scholar 

  • Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421–7426

    Article  CAS  Google Scholar 

  • Biswas G et al (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18:522–533. doi:10.1093/emboj/18.3.522

    Article  CAS  Google Scholar 

  • Brunet A et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  Google Scholar 

  • Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21:952–965. doi:10.1128/MCB.21.3.952-965.2001

    Article  CAS  Google Scholar 

  • Brunet A et al (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156:817–828. doi:10.1083/jcb.200112059

    Article  CAS  Google Scholar 

  • Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. doi:10.1126/science.1094637

    Article  CAS  Google Scholar 

  • Calnan DR, Brunet A (2008) The FoxO code Oncogene 27:2276–2288. doi:10.1038/onc.2008.21

  • Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, Sorescu D (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217. doi:10.1074/jbc.M710610200

    Article  CAS  Google Scholar 

  • Clark IE et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166. doi:10.1038/nature04779

    Article  CAS  Google Scholar 

  • Daitoku H et al (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 101:10042–10047. doi:10.1073/pnas.0400593101

    Article  CAS  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ (2000) Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10:1201–1204

    Article  CAS  Google Scholar 

  • Epstein CB et al (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    Article  CAS  Google Scholar 

  • Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    Article  CAS  Google Scholar 

  • Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2012) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19:968–979. doi:10.1038/cdd.2011.179

    Article  CAS  Google Scholar 

  • Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119. doi:10.1074/jbc.M705325200

    Article  CAS  Google Scholar 

  • Hall RK, Yamasaki T, Kucera T, Waltner-Law M, O'Brien R, Granner DK (2000) Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins J Biol Chem 275:30169–30175. doi:10.1074/jbc.M004898200

    CAS  Google Scholar 

  • Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287:19094–19104. doi:10.1074/jbc.M111.322933

    Article  CAS  Google Scholar 

  • Heddi A, Stepien G, Benke PJ, Wallace DC (1999) Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 274:22968–22976

    Article  CAS  Google Scholar 

  • Horibe T, Hoogenraad NJ (2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS One 2:e835. doi:10.1371/journal.pone.0000835

    Article  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879. doi:10.1074/jbc.M401138200

    Article  Google Scholar 

  • Hu MC et al (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117:225–237

    Article  CAS  Google Scholar 

  • Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102:1649–1654. doi:10.1073/pnas.0406789102

    Article  CAS  Google Scholar 

  • Jovaisaite V, Auwerx J (2015) The mitochondrial unfolded protein response-synchronizing genomes. Curr Opin Cell Biol 33:74–81. doi:10.1016/j.ceb.2014.12.003

    Article  CAS  Google Scholar 

  • Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131:257–270. doi:10.1016/j.cell.2007.08.028

    Article  CAS  Google Scholar 

  • Kang BH et al (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119:454–464. doi:10.1172/JCI37613

    Article  CAS  Google Scholar 

  • Kim H et al (2016) Tumor necrosis factor receptor-associated protein 1 (TRAP1) mutation and TRAP1 inhibitor Gamitrinib-triphenylphosphonium (G-TPP) induce a Forkhead box O (FOXO)-dependent cell protective signal from mitochondria. J Biol Chem 291:1841–1853. doi:10.1074/jbc.M115.656934

    Article  CAS  Google Scholar 

  • Koh H, Chung J (2012) PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol Cells 34:7–13. doi:10.1007/s10059-012-0100-8

    Article  CAS  Google Scholar 

  • Koh H, Kim H, Kim MJ, Park J, Lee HJ, Chung J (2012) Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J Biol Chem 287:12750–12758. doi:10.1074/jbc.M111.337907

    Article  CAS  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634. doi:10.1038/19328

    Article  CAS  Google Scholar 

  • Kops GJ et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321. doi:10.1038/nature01036

    Article  CAS  Google Scholar 

  • Kume S et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055. doi:10.1172/JCI41376

    Article  CAS  Google Scholar 

  • Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136. doi:10.1016/j.cub.2010.10.057

    Article  CAS  Google Scholar 

  • Lehtinen MK et al (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001. doi:10.1016/j.cell.2006.03.046

    Article  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) Daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  CAS  Google Scholar 

  • Lisanti S et al (2014) Deletion of the mitochondrial chaperone TRAP-1 uncovers global reprogramming of metabolic networks. Cell Rep 8:671–677. doi:10.1016/j.celrep.2014.06.061

    Article  CAS  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787. doi:10.1038/35008115

    Article  CAS  Google Scholar 

  • Mei Y, Zhang Y, Yamamoto K, Xie W, Mak TW, You H (2009) FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc Natl Acad Sci U S A 106:5153–5158. doi:10.1073/pnas.0901104106

    Article  CAS  Google Scholar 

  • Mouchiroud L et al (2013) The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441. doi:10.1016/j.cell.2013.06.016

    Article  CAS  Google Scholar 

  • Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452. doi:10.1126/science.1069004

    Article  CAS  Google Scholar 

  • Ney PA (2015) Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 1853:2775–2783. doi:10.1016/j.bbamcr.2015.02.022

    Article  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999. doi:10.1038/40194

    Article  CAS  Google Scholar 

  • Olmos Y, Sanchez-Gomez FJ, Wild B, Garcia-Quintans N, Cabezudo S, Lamas S, Monsalve M (2013) SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signal 19:1507–1521. doi:10.1089/ars.2012.4713

    Article  CAS  Google Scholar 

  • Owusu-Ansah E, Yavari A, Mandal S, Banerjee U (2008) Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 40:356–361. doi:10.1038/ng.2007.50

    Article  CAS  Google Scholar 

  • Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521:525–528. doi:10.1038/nature14300

    Article  CAS  Google Scholar 

  • Papa L, Germain D (2011) Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 124:1396–1402. doi:10.1242/jcs.078220

    Article  CAS  Google Scholar 

  • Papa L, Germain D (2014) SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol 34:699–710. doi:10.1128/MCB.01337-13

    Article  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  CAS  Google Scholar 

  • Park J et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161. doi:10.1038/nature04788

    Article  CAS  Google Scholar 

  • Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:257–273. doi:10.1016/j.neuron.2014.12.007

    Article  CAS  Google Scholar 

  • Rothermel BA, Shyjan AW, Etheredge JL, Butow RA (1995) Transactivation by Rtg1p, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 270:29476–29482

    Article  CAS  Google Scholar 

  • Rothermel BA, Thornton JL, Butow RA (1997) Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 272:19801–19807

    Article  CAS  Google Scholar 

  • Schmoll D et al (2000) Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity J Biol Chem 275:36324–36333. doi:10.1074/jbc.M003616200

    CAS  Google Scholar 

  • Sciacovelli M et al (2013) The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 17:988–999. doi:10.1016/j.cmet.2013.04.019

    Article  CAS  Google Scholar 

  • Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11:2103–2115

    Article  CAS  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    Article  CAS  Google Scholar 

  • Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581

    Article  CAS  Google Scholar 

  • Sunayama J, Tsuruta F, Masuyama N, Gotoh Y (2005) JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 170:295–304. doi:10.1083/jcb.200409117

    Article  CAS  Google Scholar 

  • Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12:1129–1135. doi:10.1038/nn.2372

    Article  CAS  Google Scholar 

  • Tran H et al (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534. doi:10.1126/science.1068712

    Article  CAS  Google Scholar 

  • Valente EM et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–1160. doi:10.1126/science.1096284

    Article  CAS  Google Scholar 

  • Wang K, Long B, Jiao JQ, Wang JX, Liu JP, Li Q, Li PF (2012) miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun 3:781. doi:10.1038/ncomms1770

  • Webb AE, Brunet A (2014) FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 39:159–169. doi:10.1016/j.tibs.2014.02.003

    Article  CAS  Google Scholar 

  • Yamagata K et al (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32:221–231. doi:10.1016/j.molcel.2008.09.013

    Article  CAS  Google Scholar 

  • Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556. doi:10.1371/journal.pbio.1000556

    Article  Google Scholar 

  • Yoshida S et al (2013) Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A 110:E1604–E1612. doi:10.1073/pnas.1220659110

    Article  CAS  Google Scholar 

  • Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19:757–766. doi:10.1016/j.cmet.2014.01.011

    Article  CAS  Google Scholar 

  • Yun H et al (2014) AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J 281:4421–4438. doi:10.1111/febs.12949

    Article  CAS  Google Scholar 

  • Zhu Y et al (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288:1099–1113. doi:10.1074/jbc.M112.399345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants (NRF-2012R1A1A1012482, NRF-2016R1D1A1B03932754, NRF-2016R1A5A2007009) funded by the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyongjong Koh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Koh, H. Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr 49, 335–341 (2017). https://doi.org/10.1007/s10863-017-9705-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9705-0

Keywords

Navigation