Skip to main content
Log in

Respiratory chain inhibition: one more feature to propose MPTP intoxication as a Leigh syndrome model

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice have been widely used to model the loss of dopaminergic neurons. As this treatment leads to basal ganglia degeneration, it was proposed that MPTP mice could be used as a model of Leigh syndrome. However, this mitochondrial pathology is biochemically characterized by a respiratory chain dysfunction. To determine if MPTP can affect in vivo mitochondria function, we measured the activities of mitochondrial respiratory chain complexes in several tissues. Our results show that MPTP affects mainly mitochondrial respiratory chain complex IV, as found in Leigh Syndrome, confirming that acute MPTP intoxicated mice are a good model of Leigh Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Battino M, Littarru GP, Gorini A, Villa RF (1996) Coenzyme Q, peroxidation and cytochrome oxidase features after parkinson’s-like disease by MPTP toxicity in intra-synaptic and non-synaptic mitochondria from Macaca fascicularis cerebral cortex and hippocampus: action of dihydroergocriptine. Neurochem Res 21:1505–1514

    Article  CAS  Google Scholar 

  • Billett EE (2004) Monoamine oxidase (MAO) in human peripheral tissues. Neurotoxicology 25:139–148. doi:10.1016/S0161-813X(03)00094-9

    Article  CAS  Google Scholar 

  • Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83. doi:10.1016/j.expneurol.2012.01.011

    Article  CAS  Google Scholar 

  • Desai VG, Feuers RJ, Hart RW, Ali SF (1996) MPP(+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport. Brain Res 715:1–8. doi:10.1016/0006–8993(95)01255-9

    Article  CAS  Google Scholar 

  • DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668. doi:10.1056/NEJMra022567

    Article  CAS  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

    Article  CAS  Google Scholar 

  • Gerards M, Sallevelt SC, Smeets HJ (2016) Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab 117:300–312. doi:10.1016/j.ymgme.2015.12.004

    Article  CAS  Google Scholar 

  • Korecka JA, Eggers R, Swaab DF, Bossers K, Verhaagen J (2013) Modeling early Parkinson’s disease pathology with chronic low dose MPTP treatment. Restor Neurol Neurosci 31:155–167. doi:10.3233/RNN-110222

    CAS  Google Scholar 

  • Lagrue E et al (2009) MPTP intoxication in mice: a useful model of Leigh syndrome to study mitochondrial diseases in childhood. Metab Brain Dis 24:321–335. doi:10.1007/s11011-009-9132-y

    Article  CAS  Google Scholar 

  • Lake NJ, Compton AG, Rahman S, Thorburn DR (2016) Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol 79:190–203. doi:10.1002/ana.24551

    Article  Google Scholar 

  • Mazzio EA, Soliman KF (2003) Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells. Neurochem Res 28:733–741

    Article  CAS  Google Scholar 

  • Medja F et al (2009) Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 9:331–339. doi:10.1016/j.mito.2009.05.001

    Article  CAS  Google Scholar 

  • Osman MY, Osman HM (2008) Inhibitory effect of acetylcholine on monoamine oxidase A and B activity in different parts of rat brain. Arzneimittel-Forschung 58:493–496. doi:10.1055/s-0031-1296546

    CAS  Google Scholar 

  • Pain S, Gochard A, Bodard S, Gulhan Z, Prunier-Aesch C, Chalon S (2013) Toxicity of MPTP on neurotransmission in three mouse models of Parkinson’s disease Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 65:689–694 doi:10.1016/j.etp.2012.09.001

  • Pastoris O, Dossena M, Foppa P, Catapano M, Ferrari R, Dagani F (1995) Biochemical evaluations in skeletal muscles of primates with MPTP Parkinson-like syndrome Pharmacological research : the official journal of the Italian Pharmacological Society 31:361–369

  • Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810. doi:10.1113/jphysiol.2010.199448

    Article  CAS  Google Scholar 

  • Rahman S et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351. doi:10.1002/ana.410390311

    Article  CAS  Google Scholar 

  • Ransom BR, Kunis DM, Irwin I, Langston JW (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75:323–328

    Article  CAS  Google Scholar 

  • Rocher C et al (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67. doi:10.1007/s10863-008-9130-5

    Article  CAS  Google Scholar 

  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347(Pt 1):45–53

    Article  CAS  Google Scholar 

  • Rousselet E et al (2003) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 14:218–228

    Article  CAS  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol 134:57–66. doi:10.1016/j.molbrainres.2004.09.017

    Article  CAS  Google Scholar 

  • Stephenson D et al (2007) Quantification of MPTP-induced dopaminergic neurodegeneration in the mouse substantia nigra by laser capture microdissection. J Neurosci Methods 159:291–299. doi:10.1016/j.jneumeth.2006.07.027

    Article  CAS  Google Scholar 

  • Sundar Boyalla S, Barbara Victor M, Roemgens A, Beyer C, Arnold S (2011) Sex- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability. J Neurosci Res 89:2068–2082. doi:10.1002/jnr.22669

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Association contre les Maladies MItochondriales (A.M.M.I.). The authors wish to thank Dr. S. Schriner for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Rocher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Author contribution statement

BD and ED carried out experiments, collected and analyzed data, prepared the manuscript. LL and SB participated in experiments related to animal handling. PC participated in designing the experiments and reviewing the manuscript. TL contributed for data analysis and reviewed the manuscript. CR conceived experiments and contributed for analyzing data, preparing and reviewing the manuscript. All authors read and approved the final manuscript.

Additional information

Barbara DA COSTA and Elodie DUMON contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Costa, B., Dumon, E., Le Moigno, L. et al. Respiratory chain inhibition: one more feature to propose MPTP intoxication as a Leigh syndrome model. J Bioenerg Biomembr 48, 483–491 (2016). https://doi.org/10.1007/s10863-016-9683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9683-7

Keywords

Navigation