Skip to main content

Advertisement

Log in

In Vivo study of naturally deformed Escherichia coli bacteria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A combination of light-microscopy and image processing has been applied to study naturally deformed Escherichia coli under in vivo condition and at the order of sub-pixel high-resolution accuracy. To classify deflagellated non-dividing E. coli cells to the rod-shape and bent-shape, a geometrical approach has been applied. From the analysis of the geometrical data which were obtained of image processing, we estimated the required effective energy for shaping a rod-shape to a bent-shape with the same size. We evaluated the energy of deformation in the naturally deformed bacteria with minimum cell manipulation, under in vivo condition, and with minimum influence of any external force, torque and pressure. Finally, we have also elaborated on the possible scenario to explain how naturally deformed bacteria are formed from initial to final-stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amir A (2014) Cell size regulation in bacteria. Phys Rev Lett 112(20):208,102

    Article  Google Scholar 

  • Amir A, Nelson DR (2012) Dislocation-mediated growth of bacterial cell walls. Proc Natl Acad Sci 109(25):9833–9838

    Article  CAS  Google Scholar 

  • Amir A, van Teeffelen S (2014) Getting into shape: how do rod-like bacteria control their geometry? Syst Synth Biol 8(3):227–235

    Article  Google Scholar 

  • Amir A, Babaeipour F, McIntosh DB, Nelson DR, Jun S (2014) Bending forces plastically deform growing bacterial cell walls. Proc Natl Acad Sci 111(16):5778–5783

    Article  CAS  Google Scholar 

  • Arnoldi M, Fritz M, Bäuerlein E, Radmacher M, Sackmann E, Boulbitch A (2000) Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E 62(1):1034

    Article  CAS  Google Scholar 

  • Beeby M, Gumbart JC, Roux B, Jensen GJ (2013) Architecture and assembly of the gram-positive cell wall. Mol Microbiol 88(4):664–672

    Article  CAS  Google Scholar 

  • Bendezu FO, Hale CA, Bernhardt TG, de Boer PA (2009) Rodz (yfga) is required for proper assembly of the mreb actin cytoskeleton and cell shape in e. coli. EMBO J 28(3):193–204

    Article  CAS  Google Scholar 

  • Boulbitch A, Quinn B, Pink D (2000) Elasticity of the rod-shaped gram-negative eubacteria. Phys Rev Lett 85(24):5246

    Article  CAS  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2007) Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. J Cell Biol 179(3):381–387

    Article  CAS  Google Scholar 

  • Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO j 28(9):1208–1219

    Article  CAS  Google Scholar 

  • Cooper S, Denny MW (1997) A conjecture on the relationship of bacterial shape to motility in rod-shaped bacteria. FEMS Microbiol Lett 148(2):227–231

    Article  CAS  Google Scholar 

  • Deng Y, Sun M, Shaevitz JW (2011) Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys Rev Lett 107(15):158,101

    Article  Google Scholar 

  • Dusenbery DB (2009) Living at micro scale: the unexpected physics of being small. Harvard University Press

  • Eun YJ, Kapoor M, Hussain S, Garner EC (2015) Bacterial filament systems: towards understanding their emergent behavior and cellular functions. J Biol Chem:jbc–R115

  • Furchtgott L, Wingreen NS, Huang KC (2011) Mechanisms for maintaining cell shape in rod-shaped gram-negative bacteria. Mol Microbiol 81(2):340–353

    Article  CAS  Google Scholar 

  • Gray AN, Egan AJ, van’t Veer IL, Verheul J, Colavin A, Koumoutsi A, Biboy J, Altelaar MA, Damen MJ, Huang KC et al (2015) Coordination of peptidoglycan synthesis and outer membrane constriction during escherichia coli cell division. eLife :e07118

  • Grover N, Woldringh C (2001) Dimensional regulation of cell-cycle events in escherichia coli during steady-state growth. Microbiology 147(1):171–181

    Article  CAS  Google Scholar 

  • Guberman JM, Fay A, Dworkin J, Wingreen NS, Gitai Z (2008) Psicic: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS Comput Biol 4(11):e1000,233

    Article  Google Scholar 

  • Gumbart JC, Beeby M, Jensen GJ, Roux B (1003) Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. Plos Comput Biol 10:475

    Google Scholar 

  • Harold FM (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54(4):381

    CAS  Google Scholar 

  • Huang KC, Ramamurthi KS (2010) Macromolecules that prefer their membranes curvy. Mol Microbiol 76(4):822–832

    Article  CAS  Google Scholar 

  • Huang KC, Mukhopadhyay R, Wingreen NS (2006) A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput Biol 2(11):e151

    Article  Google Scholar 

  • Huang KC, Mukhopadhyay R, Wen B, Gitai Z, Wingreen NS (2008) Cell shape and cell-wall organization in gram-negative bacteria. Proc Natl Acad Sci 105(49):19,282–19,287

    Article  CAS  Google Scholar 

  • Itan E, Carmon G, Rabinovitch A, Fishov I, Feingold M (2008) Shape of nonseptated escherichia coli is asymmetric. Phys Rev E 77(6):061,902

    Article  CAS  Google Scholar 

  • Iyer-Biswas S, Wright CS, Henry JT, Lo K, Burov S, Lin Y, Crooks GE, Crosson S, Dinner AR, Scherer NF (2014) Scaling laws governing stochastic growth and division of single bacterial cells. Proc Natl Acad Sci 111(45):15,912–15,917

    Article  CAS  Google Scholar 

  • Jauffred L, Callisen TH, Oddershede LB (2007) Visco-elastic membrane tethers extracted from escherichia coli by optical tweezers. Biophys J 93(11):4068–4075

    Article  CAS  Google Scholar 

  • Jiang H, Si F, Margolin W, Sun SX (2011) Mechanical control of bacterial cell shape. Biophys J 101(2):327–335

    Article  CAS  Google Scholar 

  • Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N et al (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30(24):4931–4941

    Article  CAS  Google Scholar 

  • Laloux G, Jacobs-Wagner C (2014) How do bacteria localize proteins to the cell pole? J Cell Sci 127(1):11–19

    Article  CAS  Google Scholar 

  • Lan G, Wolgemuth CW, Sun SX (2007) Z-ring force and cell shape during division in rod-like bacteria. Proc Natl Acad Sci 104(41):16,110–16,115

    Article  CAS  Google Scholar 

  • Männik J, Wu F, Hol FJ, Bisicchia P, Sherratt DJ, Keymer JE, Dekker C (2012) Robustness and accuracy of cell division in escherichia coli in diverse cell shapes. Proc Natl Acad Sci 109(18): 6957–6962

    Article  Google Scholar 

  • Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19(17):R812–R822

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Wingreen NS (2009) Curvature and shape determination of growing bacteria. Phys Rev E 80(6):062,901

    Article  Google Scholar 

  • Mukhopadhyay R, Huang KC, Wingreen NS (2008) Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys J 95(3):1034–1049

    Article  CAS  Google Scholar 

  • Nelson DR (2012) Biophysical dynamics in disorderly environments. Annu Rev Biophys 41:371–402

    Article  CAS  Google Scholar 

  • Nguyen LT, Gumbart JC, Beeby M, Jensen GJ (2015) Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc Natl Acad Sci 112(28):E3689–E3698

    Article  CAS  Google Scholar 

  • Olrichs NK, Aarsman ME, Verheul J, Arnusch CJ, Martin NI, Hervé M, Vollmer W, de Kruijff B, Breukink E, den Blaauwen T (2011) A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in escherichia coli. ChemBioChem 12(7):1124–1133

    Article  CAS  Google Scholar 

  • Osborn MJ, Rothfield L (2007) Cell shape determination in escherichia coli. Curr Opin Microbiol 10(6):606–610

    Article  CAS  Google Scholar 

  • Phillips R, Quake S (2006) The biological frontier of physics. Phys Today 59(5):38–43

    Article  CAS  Google Scholar 

  • Ploeg R, Verheul J, Vischer NO, Alexeeva S, Hoogendoorn E, Postma M, Banzhaf M, Vollmer W, Blaauwen T (2013) Colocalization and interaction between elongasome and divisome during a preparative cell division phase in escherichia coli. Mol Microbiol 87(5):1074–1087

    Article  Google Scholar 

  • Rabinovitch A, Zaritsky A, Feingold M (2003) Dna–membrane interactions can localize bacterial cell center. J Theor Biol 225(4):493–496

    Article  CAS  Google Scholar 

  • Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of escherichia coli membranes. Proc Natl Acad Sci 108(15):6264–6269

    Article  CAS  Google Scholar 

  • Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4(1):57–66

    Article  Google Scholar 

  • Schirner K, Eun YJ, Dion M, Luo Y, Helmann JD, Garner EC, Walker S (2014) Lipid-linked cell wall precursors regulate membrane association of bacterial actin mreb. Nature chemical biology

  • Shiomi D, Sakai M, Niki H (2008) Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27(23):3081–3091

    Article  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harbor perspectives in biology 2(5):a000,414

    Article  Google Scholar 

  • Sliusarenko O, Cabeen MT, Wolgemuth CW, Jacobs-Wagner C, Emonet T (2010) Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology. Proc Natl Acad Sci 107(22):10,086–10,091

    Article  CAS  Google Scholar 

  • Sun SX, Jiang H (2011) Physics of bacterial morphogenesis. Microbiol Mol Biol Rev 75(4):543–565

    Article  CAS  Google Scholar 

  • Tavaddod S, Charsooghi M, Abdi F, Khalesifard H, Golestanian R (2011) Probing passive diffusion of flagellated and deflagellated escherichia coli. Eur Phys J E 34(2):1–7

    Article  Google Scholar 

  • Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ (2013) Cell wall elongation mode in gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun 4:1496

    Article  Google Scholar 

  • Turner RD, Vollmer W, Foster SJ (2014) Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 91(5):862–874

    Article  CAS  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136

    CAS  Google Scholar 

  • Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC (2014) Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci 111(11):E1025–E1034

    Article  CAS  Google Scholar 

  • Vardi E, Grover N (1992) Aggregation of escherichia coli b/r a during agar filtration: Effect on morphometric measurements. Cytometry 13(5):540–544

    Article  CAS  Google Scholar 

  • Vardi E, Grover N (1993) Shape changes in escherichia coli b/r a during agar filtration. Cytometry 14(2):173–178

    Article  CAS  Google Scholar 

  • Vischer N, Verheul J, Postma M, Van˙den˙berg˙van˙saparoea B, Galli E, Natale P, Gerdes K, Luirink J, Vollmer W, Vicente M et al (2015) Cell age dependent concentration of escherichia coli divisome proteins analyzed with imagej and object. Name: Front Microbiol 6:586

    Google Scholar 

  • Wang S, Wingreen NS (2013) Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Biophys J 104(3):541–552

    Article  CAS  Google Scholar 

  • Wang S, Arellano-Santoyo H, Combs PA, Shaevitz JW (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci 107(20):9182–9185

    Article  CAS  Google Scholar 

  • Woldringh C, Grover N, Rosenberger R, Zaritsky A (1980) Dimensional rearrangement of rod-shaped bacteria following nutritional shift-up. ii. experiments with escherichia colibr. J Theor Biol 86(3):441–454

    Article  CAS  Google Scholar 

  • Woldringh CL (2002) The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45(1):17–29

    Article  CAS  Google Scholar 

  • Yao X, Jericho M, Pink D, Beveridge T (1999) Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181(22):6865–6875

    CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):660–703

    Article  Google Scholar 

  • Young KD (2007) Bacterial morphology: why have different shapes? Curr Opin Microbiol 10(6):596–600

    Article  Google Scholar 

  • Zaritsky A (2015) Cell-shape homeostasis in escherichia coli is driven by growth, division, and nucleoid complexity. Biophys J 109(2):178–181

    Article  CAS  Google Scholar 

  • Zaritsky A, Woldringh CL (2015) Chromosome replication, cell growth, division and shape: a personal perspective. Front Microbiol:6

  • Zaritsky A, Woldringh CL, Mirelman D (1979) Constant peptidoglycan density in the sacculus of escherichia coli b/r growing at different rates. FEBS Lett 98(1):29–32

    Article  CAS  Google Scholar 

  • Zaritsky A, Woldringh CL, Pritchard R, Fishov I (2000) Surviving escherichia coli in good shape: The many faces of bacillary bacteria in cellular origin and life in extreme habitats

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Howard C. Berg and Karen Fahrner for kindly providing the E. coli strain HCB137. Special thanks go to Conrad L. Woldringh for his help in providing the strain, his expert advices and very interesting discussions. His suggestions and remarks significantly improved this study. We are immensely grateful to Ramin Golestanian for the original idea of the manuscript. We would like to acknowledge Ramin Golestanian, M. Faez Miri, Daivid Nelson, Ariel Amir, Nader Rasouli, and Jafar Amjad for enlightening remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Naderi-Manesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavaddod, S., Naderi-Manesh, H. In Vivo study of naturally deformed Escherichia coli bacteria. J Bioenerg Biomembr 48, 281–291 (2016). https://doi.org/10.1007/s10863-016-9658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9658-8

Keywords

Navigation