Skip to main content

Advertisement

Log in

P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The ATP-gated P2X7R (P2X7R) is a channel, which is involved in events, such as inflammation, cell death, and pain. The most intriguing event concerning P2X7R functions is the phenomenon of pore dilation. Once P2X7R is activated, the permeability of the plasma membrane becomes higher, leading to the permeation of 1000 Da-weight solutes. The mechanisms involved in this process remain unclear. Nevertheless, this event is not exclusively through P2X7R, as other proteins may form large pores in the plasma membrane. Recent evidence concerning pore formation reveals putative P2X7R and other pores-associated protein complexes, revealing cross-interactive pharmacological and biophysical issues. In this work, we showed results that corroborated with cross-interactive aspects with P2X7R and pores in astrocytes. These cells expressed most of the pores, including P2X7R. We discovered that different pore types open with peculiar characteristics, as both anionic and cationic charged solutes permeate the plasma membrane, following P2X7R activation. Moreover, we showed that both synergic and additive relationships are found within P2X7, cationic, and anionic large pores. Therefore, our data suggest that other protein-related pores are assembled following the formation of P2X7R pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X7 receptor: death or life? Purinergic Signal 1:219–227

    Article  CAS  Google Scholar 

  • Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72:2957–2969

    Article  CAS  Google Scholar 

  • Akanda N, Tofighi R, Brask J, Tamm C, Elinder F, Ceccatelli S (2008) Voltage-dependent anion channels (VDAC) in the plasma membrane play a critical role in apoptosis in differentiated hippocampal neurons but not in neural stem cells. Cell Cycle 7:3225–3234

    Article  CAS  Google Scholar 

  • Alberto AVP, Faria RX, Couto CGC, Ferreira LGB, Souza CAM, Teixeira PCN, Fróes MM, Alves LA (2013) Is pannexin the pore associated with the P2X7 receptor? Naunyn Schmiedebergs Arch Pharmacol 386:775–787

    Article  CAS  Google Scholar 

  • Alves LA, Coutinho-Silva R, Savino W (1999) Extracellular ATP: a further modulator in neuroendocrine control of the thymus. Neuroimmunomodulation 6:81–89

    Article  CAS  Google Scholar 

  • Alves LA, Soares Bezerra RJ, Faria RX, Ferreira LG, Frutuoso VDS (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18:10953–10972

    Article  CAS  Google Scholar 

  • Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, Caffarena ER, de Freitas MS (2014) Structural and molecular modeling features of P2X receptors. Int J Mol Sci 15:4531–4549

    Article  Google Scholar 

  • Beyer EC, Steinberg TH (1991) Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J Biol Chem 266:7971–7974

    CAS  Google Scholar 

  • Bhaskaracharya A, Dao-Ung P, Jalilian I, Spildrejorde M, Skarratt KK, Fuller SJ, Sluyter R, Stokes L (2014) Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism. PLoS One 9:e93058

    Article  Google Scholar 

  • Bhattacharya AA, Neff RD, Wickenden A (2011) The physiology, pharmacology and future of P2X7 as an analgesic drug target: hype or promise? Curr Pharm Biotechnol 12:1698–1706

    Article  CAS  Google Scholar 

  • Cankurtaran-sayar S, Sayar K, Ugur M (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol 76:1323–1332

    Article  CAS  Google Scholar 

  • Chou T-C, Talalay P (1983) Analysis of combined drug effects: a new look at a very old problem. Trends Pharmacol Sci 4:450–454

    Article  CAS  Google Scholar 

  • Dahlquist R, Diamant B, Krüger PG (1974) Increased permeability of the rat mast cell membrane to sodium and potassium caused by extracellular ATP and its relationship to histamine release. Int Arch Allergy Appl Immunol 46:655–675

    Article  CAS  Google Scholar 

  • De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44

    Article  Google Scholar 

  • Decherf G, Bouyer G, Egée S et al (2007) Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 39:24–34

  • Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5:251–256

    Article  Google Scholar 

  • Dicker P, Heppel LA, Rozengurt E (1980) Control of membrane permeability by external and internal ATP in 3 T6 cells grown in serum-free medium. Proc Natl Acad Sci U S A 77:2103–2107

    Article  CAS  Google Scholar 

  • Donnerer J, Liebmann I (2012) Thermal stimulation of primary sensory neurons in the rat hind paw: effect of morphine on ERK1/2 phosphorylation, TRPV1 and TRPA1 channel expression. Pharmacology 90:298–306

    Article  CAS  Google Scholar 

  • Dutta AK, Sabirov RZ, Uramoto H, Okada Y (2004) Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol 559(Pt 3):799–812

    Article  CAS  Google Scholar 

  • Eyo UB, Miner SA, Ahlers KE, Wu LJ, Dailey ME (2013) P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 73:311–319

    Article  CAS  Google Scholar 

  • Faria RX, Defarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260–C271

    Article  CAS  Google Scholar 

  • Faria RX, Reis RAM, Casabulho CM, Alberto AVP, de Farias FP, Henriques-Pons A, Alves LA (2009) Pharmacological properties of a pore induced by raising intracellular Ca2 +. Am J Physiol Cell Physiol 297:C28–C42

    Article  CAS  Google Scholar 

  • Faria RX, Cascabulho CM, Reis RAM, Alves LA (2010) Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn Schmiedebergs Arch Pharmacol 382:73–87

    Article  CAS  Google Scholar 

  • Ferreira LG, Pereira L, Faria R et al. (2015) Fluorescent dyes as a reliable tool in P2X7 receptor-associated pore studies. J Bioenerg Biomembr

  • Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC, Bennett MVL, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci U S A 107:22659–22664

    Article  Google Scholar 

  • Hattori F, Ohshima Y, Seki S, Tsukimoto M, Sato M, Takenouchi T, Suzuki A, Takai E, Kitani H, Harada H, Kojima S (2012) Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7. Eur J Pharmacol 695:20–26

    Article  CAS  Google Scholar 

  • Hoffmann T, Kistner K, Miermeister F, Winkelmann R, Wittmann J, Fischer MJM, Weidner C, Reeh PW (2013) TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain 17:1472–1482

    CAS  Google Scholar 

  • Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B (2008) Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch Eur J Physiol 457:77–89

    Article  CAS  Google Scholar 

  • Kato Y, Omote H, Miyaji T (2013) Inhibitors of ATP release inhibit vesicular nucleotide transporter. Biol Pharm Bull 36:1688–1691

    Article  CAS  Google Scholar 

  • Kruska N, Schönfeld P, Pujol A, Reiser G (2015) Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta - Mol Basis Dis 1852:925–936

    Article  CAS  Google Scholar 

  • Kunugi S, Iwabuchi S, Matsuyama D, Okajima T, Kawahara K (2011) Negative-feedback regulation of ATP release: ATP release from cardiomyocytes is strictly regulated during ischemia. Biochem Biophys Res Commun 416:409–415

    Article  CAS  Google Scholar 

  • Lakshmi S, Joshi PG (2005) Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain. Cell Mol Neurobiol 25:819–832

    Article  Google Scholar 

  • Lapointe TK, Altier C (2011) The role of TRPA1 in visceral inflammation and pain. Channels (Austin) 5(December):525–529

    Article  CAS  Google Scholar 

  • Lee SM, Cho YS, Kim TH, Jin MU, Ahn DK, Noguchi K, Bae YC (2012) An ultrastructural evidence for the expression of transient receptor potential ankyrin 1 (TRPA1) in astrocytes in the rat trigeminal caudal nucleus. J Chem Neuroanat 45:45–49

    Article  CAS  Google Scholar 

  • Lin Y-JJ, Hsu H-HH, Ruan T, Kou YR (2013) Mediator mechanisms involved in TRPV1, TRPA1 and P2X receptor-mediated sensory transduction of pulmonary ROS by vagal lung C-fibers in rats. Respir Physiol Neurobiol 189:1–9

    Article  CAS  Google Scholar 

  • Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4:5

    Article  Google Scholar 

  • Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:4835–4843

    Article  CAS  Google Scholar 

  • Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357

    Article  Google Scholar 

  • Liu H-T, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 18:558–565

    Article  CAS  Google Scholar 

  • Liu H, Zhang H-X, Hou H-Y, Lu X-F, Wei J-Q, Wang C-G, Zhang L-C, Zeng Y-M, Wu Y-P, Cao J-L (2011) Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects. PLoS One 6:e29395

    Article  CAS  Google Scholar 

  • Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  CAS  Google Scholar 

  • Ma J, Altomare A, Rieder F, Behar J, Biancani P, Harnett KM (2011) ATP: a mediator for HCl-induced TRPV1 activation in esophageal mucosa. AJP Gastrointest Liver Physiol 301:G1075–G1082

    Article  CAS  Google Scholar 

  • Ma J, Altomare A, Guarino M, Cicala M, Rieder F, Fiocchi C, Li D, Cao W, Behar J, Biancani P, Harnett KM (2012) HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 303:G635–G645

    Article  CAS  Google Scholar 

  • Mannari T, Morita S, Furube E, Tominaga M, Miyata S (2013) Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains. Glia 61:957–971

    Article  Google Scholar 

  • Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZP, da Silva Marques C (2011) Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 163:912–926

    Article  CAS  Google Scholar 

  • Nagasawa K, Escartin C, Swanson RA (2009) Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Glia 57:622–633

    Article  Google Scholar 

  • Pelegrín P (2011) Many ways to dilate the P2X7 receptor pore. Br J Pharmacol 163:908–911

    Article  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  CAS  Google Scholar 

  • Pelegrín P, Surprenant A (2009) The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137

    Article  Google Scholar 

  • Rubini P, Pagel G, Mehri S, Marquardt P, Riedel T, Illes P (2014) Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons. Naunyn Schmiedebergs Arch Pharmacol 387:943–954

    Article  CAS  Google Scholar 

  • Ryu SY, Peixoto PM, Won JH, Yule DI, Kinnally KW (2010) Extracellular ATP and P2Y2 receptors mediate intercellular Ca2+ waves induced by mechanical stimulation in submandibular gland cells: Role of mitochondrial regulation of store operated Ca2+ entry. Cell Calcium 47:65–76

    Article  CAS  Google Scholar 

  • Sabirov RZ, Merzlyak PG (2012) Plasmalemmal VDAC controversies and maxi-anion channel puzzle. Biochim Biophys Acta 1818:1570–1580

    Article  CAS  Google Scholar 

  • Salas E, Carrasquero LMG, Olivos-Oré LA, Bustillo D, Artalejo AR, Miras-Portugal MT, Delicado EG (2013) Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 347:802–815

    Article  CAS  Google Scholar 

  • Schachter J, Motta AP, de Souza Zamorano A, da Silva-Souza HA, Guimarães MZP, Persechini PM (2008) ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 121(Pt 19):3261–3270

    Article  CAS  Google Scholar 

  • Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG (1999) Maitotoxin and P2Z/P2X(7) purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277(4 Pt 1):C766–C776

    CAS  Google Scholar 

  • Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    Article  Google Scholar 

  • Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS (2013) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 33:10143–10153

    Article  CAS  Google Scholar 

  • Shrivastava AN, Rodriguez PC, Triller A, Renner M (2013) Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking. Front Cell Neurosci 7(November):232

    Google Scholar 

  • Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin J-S, Zaykin DV, Vander Meulen H, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Seltzer Z, Salter MW, Mogil JS (2012) Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18:595–599

    Article  CAS  Google Scholar 

  • Stanchev D, Blosa M, Milius D, Gerevich Z, Rubini P, Schmalzing G, Eschrich K, Schaefer M, Wirkner K, Illes P (2009) Cross-inhibition between native and recombinant TRPV1 and P2X(3) receptors. Pain 143:26–36

    Article  CAS  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  Google Scholar 

  • Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro DG (2005) Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol Cell Physiol 288:C568–C576

    Article  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  Google Scholar 

  • Toychiev AH, Sabirov RZ, Takahashi N, Ando-Akatsuka Y, Liu H, Shintani T, Noda M, Okada Y (2009) Activation of maxi-anion channel by protein tyrosine dephosphorylation. Am J Physiol Cell Physiol 297:C990–C1000

    Article  CAS  Google Scholar 

  • Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–321

    Article  CAS  Google Scholar 

  • Wang H, Wang DH, Galligan JJ (2010) P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons. Am J Physiol Regul Integr Comp Physiol 298:R1634–R1641

    Article  CAS  Google Scholar 

  • Wang J, Jackson DG, Dahl G (2013) The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1. J Gen Physiol 141:649–656

    Article  CAS  Google Scholar 

  • Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590(Pt 10):2285–2304

    Article  CAS  Google Scholar 

  • Yan Z, Li S, Liang Z, Tomić M, Stojilkovic SS (2008) The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol 132:563–573

    Article  CAS  Google Scholar 

  • Yang T-H, Tian L-Y, Shang H-F, Cheng X-W, Geng J, Chen L, Zhou D (2009) Suppression of the multidrug transporter P-glycoprotein using RNA interference in cultured rat astrocytes induced by coriaria lactone. Neurol Res 31:1084–1091

    Article  CAS  Google Scholar 

  • Ye ZC, Oberheim N, Kettenmann H, Ransom BR (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels. Glia 57:258–269

    Article  Google Scholar 

  • Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23:1685–1693

    Article  CAS  Google Scholar 

  • Zhang X-F, Han P, Faltynek CR, Jarvis MF, Shieh C-C (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Counsel of Technological and Scientific Development (CNPq), the Foundation for Research Support of the State of Rio de Janeiro (Faperj), and the Oswaldo Cruz Institute.

Authors’ contributions

Faria performed the experiments, analyzed and interpreted the data, prepared the figures and wrote the paper. Reis isolated and plated the astrocyte cells. Ferreira performed the real-time PCR experiments, and supported the make-up of the text manuscript. Cezar-de-Mello and Moraes performed real-time PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson X. Faria.

Ethics declarations

Conflict of interest

The authors state that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, R.X., Reis, R.A.M., Ferreira, L.G.B. et al. P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes. J Bioenerg Biomembr 48, 309–324 (2016). https://doi.org/10.1007/s10863-016-9649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9649-9

Keywords

Navigation