Skip to main content

Advertisement

Log in

Mitochondrial FOXO3a is involved in amyloid β peptide-induced mitochondrial dysfunction

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer’s disease (AD). However, the precise mechanism(s) of Aβ-induced mitochondrial dysfunction has not been fully understood. There is evidence that Forkhead box O3a (FOXO3a) is normally present in neuronal mitochondria. Using HT22 murine hippocampal neuronal cells and primary hippocampal neurons, the present study investigated whether mitochondrial FOXO3a was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ induced dephosphorylation and mitochondrial translocation of FOXO3a. In addition, Aβ enhanced association of FOXO3a with mitochondrial DNA (mtDNA), causing a decrease in the expression of cytochrome c oxidase subunit 1 (COX1) and the activity of COX. In addition, Aβ-induced mitochondrial dysfunction, indicated by the decrease in 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion, mitochondrial adenosine triphosphate (ATP) production and COX activity, could be suppressed by knockdown of FOXO3a (FOXO3a-KD). These results provide new insights into the mechanism underlying Aβ-induced neurotoxicity and open up new therapeutic perspectives for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24(2):565–575

    Article  CAS  Google Scholar 

  • Burgering BM, Kops GJ (2002) Cell cycle and death control: long live forkheads. Trends Biochem Sci 27(7):352–360

    Article  CAS  Google Scholar 

  • Caballero-Caballero A, Engel T, Martinez-Villarreal J, Sanz-Rodriguez A, Chang P, Dunleavy M, Mooney CM, Jimenez-Mateos EM, Schindler CK, Henshall DC (2013) Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J Neurochem 124(6):749–756

    Article  CAS  Google Scholar 

  • Canevari L, Clark JB, Bates TE (1999) β-amyloid fragments 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457(1):131–134

    Article  CAS  Google Scholar 

  • Cha MY, Han SH, Son SM, Hong HS, Choi YJ, Byun J, Mook-Jung I (2012) Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One 7(4):e34929

    Article  CAS  Google Scholar 

  • Chen X, Yan SD (2006) Mitochondrial abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life 58(12):686–694

    Article  CAS  Google Scholar 

  • Chen TJ, Wang DC, Chen SS (2009) Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derivedneurotrophic factor-induced arc expression in rat cortical neurons. J Neurosci Res 87(10):2297–2307

    Article  CAS  Google Scholar 

  • Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS Jr (2003) NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278(5):2963–2968

    Article  CAS  Google Scholar 

  • Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2012) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19(6):968–979

    Article  CAS  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    Article  CAS  Google Scholar 

  • Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E, Ankarcrona M (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105(35):13145–13150

    Article  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RM, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen PB, Perry G, SmithMA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21(9):3017–3023.

  • Lai AY, McLaurin J (2010) Mechanisms of amyloid-beta peptide uptake by neurons: the role of lipid rafts and lipid raft-associated proteins. Int J Alzheimers Dis 2011:548380

    Google Scholar 

  • Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280(49):40398–40401

    Article  CAS  Google Scholar 

  • Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 20(5):1533–1544

    Article  CAS  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A (2003) Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 100:11285–11290

    Article  CAS  Google Scholar 

  • Moreira PI, Santos MS, Moreno A, Rego AC, Oliveira C (2002) Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res 69(2):257–267

    Article  CAS  Google Scholar 

  • Obsil T, Obsilova V (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27:2263–2275

    Article  CAS  Google Scholar 

  • Parks JK, Smith TS, Trimmer PA, Bennett JP, Parker WD (2001) Neurotoxic abeta peptides increase oxidative stress in vivo through NMDA receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76(4):1050–1056

    Article  CAS  Google Scholar 

  • Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di Carlo M (2011) Insulin-activated Akt rescues abeta oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 10:832–843

    Article  CAS  Google Scholar 

  • Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann N Y Acad Sci 1147:335–347

    Article  CAS  Google Scholar 

  • Ryu H, Lee J, Impey S, Ratan RR, Ferrante RJ (2005) Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci U S A 102(39):13915–13920

    Article  CAS  Google Scholar 

  • Sanphui P, Biswas SC (2013) FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis 4:e625

    Article  CAS  Google Scholar 

  • Shi C, Wu F, Xu J (2010) H2O2 and PAF mediate Abeta1-42-induced Ca2+ dyshomeostasis that is blocked by EGb761. Neurochem Int 56(8):893–905

    Article  CAS  Google Scholar 

  • Shi C, Zhu X, Wang J, Long D (2014) Intromitochondrial IκB/NF-κB signaling pathway is involved in amyloid β peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr 46(5):371–376

    Article  CAS  Google Scholar 

  • Spuch C, Ortolano S, Navarro C (2012) New insights in the amyloid-beta interaction with mitochondria. J Aging Res 2012:324968

    Article  Google Scholar 

  • Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309

    Article  Google Scholar 

  • van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450

    Article  Google Scholar 

  • Van Helmond Z, Heesom K, Love S (2009) Characterisation of two antibodies to oligomeric abeta and their use in ELISAs on human brain tissuehomogenates. J Neurosci Methods 176(2):206–212

    Article  Google Scholar 

  • Vogt PK, Jiang H, Aoki M (2005) Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4:908–913

    Article  CAS  Google Scholar 

  • Webb AE, Brunet A (2014) FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 39(4):159–169

    Article  CAS  Google Scholar 

  • Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32:221–231

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Zhu WG (2011) Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol 3:276–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support from National Natural Science Foundation of China (No.81370395 and No.31160221), and Guangdong Natural Science Foundation (No. 2013010014468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumei Luo.

Additional information

Chun Shi and Jianhua Zhu these two authors contribute to this work equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Zhu, J., Leng, S. et al. Mitochondrial FOXO3a is involved in amyloid β peptide-induced mitochondrial dysfunction. J Bioenerg Biomembr 48, 189–196 (2016). https://doi.org/10.1007/s10863-016-9645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9645-0

Keywords

Navigation