Skip to main content
Log in

Role of enzymatic and non-enzymatic processes in H2O2 removal by rat liver and heart mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We compared the capacity of rat liver and heart mitochondria to remove exogenously produced H2O2, determining their ability to decrease fluorescence generated by H2O2 detector system. In the absence of substrates, liver and heart mitochondria removed H2O2 at similar rates. Respiratory substrate addition increased removal rates, indicating a respiration-dependent process. Moreover, the rates were higher with pyruvate/malate than with succinate and in heart than in liver mitochondria. Generally, the changes in H2O2 removal rates mirrored those of H2O2 release rates excluding the possibility that endogenous and exogenous H2O2 competed for the removing system. This idea was supported by the observation that the heaviest of three liver mitochondrial fractions exhibited the highest rates of both H2O2 release and removal. Pharmacological inhibition showed tissue-linked differences in antioxidant enzyme contribution to H2O2 removal which were consistent with the differences in antioxidant system activities. The enzymatic processes accounted only in part for net H2O2 removal and the non-enzymatic ones participated to H2O2 scavenging to a degree that was higher for heart than for liver mitochondria. The idea that non-enzymatic scavenging was due in great part to hemoproteins action was consistent with observation that the concentration of cytochromes, in particular cytochrome c, was higher in heart mitochondria. Indirect support was also obtained by a technique of enhanced luminescence, utilizing the capacity of cytochrome c/H2O2 to catalyze the luminol oxidation, which showed that luminescence response to an oxidative challenge was higher in heart mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128(3):617–630

    CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    Article  CAS  Google Scholar 

  • Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219–226

    Article  CAS  Google Scholar 

  • Di Meo S, Venditti P, De Leo T (1996) Tissue protection against oxidative stress. Experientia 52(8):786–794

    Article  Google Scholar 

  • Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin System. J Biol Chem 285:27850–27858

    Article  CAS  Google Scholar 

  • Ernster L, Lee C-P (1967) Energy-linked reduction of NAD+ by succinate. Methods Enzymol 10:729–738

    Article  CAS  Google Scholar 

  • Estabrook RW, Holowinsky A (1961) Studies on the content and organization of the respiratory enzymes of mitochondria. J Biophys Biochem Cytol 9:19–28

    Article  CAS  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease. Free Radical and tissue injury. Lab Invest 47(5):412–426

    CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2006) Free Radicals in Biology and Medicine, Ed 4. Clarendon Press, Oxford

    Google Scholar 

  • Hyslop PA, Sklar LA (1984) A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal Biochem 141(1):280–286

    Article  CAS  Google Scholar 

  • Jacobson KB, Kaplan NO (1957) Pyridine coenzymes of subcellular tissue fractions. J Biol Chem 226(2):603–613

    CAS  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37(12):1963–1985

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1(4):223–232

    Article  CAS  Google Scholar 

  • Korshunov SS, Kraniskov BF, Pereverzev MO, Skulachev VP (1999) The antioxidant function of cytochrome c. FEBS Lett 462(1–2):192–198

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343

    Article  CAS  Google Scholar 

  • Lawrence A, Jones CM, Wardman P, Burkitt MJ (2003) Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2. Implications for oxidative stress during apoptosis. J Biol Chem 278(32):29410–29419

    Article  CAS  Google Scholar 

  • Loschen G, Flohé L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18(2):261–264

    Article  CAS  Google Scholar 

  • Moreira PI, Custódio JBA, Nunes E, Oliveira PJ, Moreno A, Seic R, Oliveira CR, Santos MS (2011) Mitochondria from distinct tissues are differently affected by 17β-estradiol and tamoxifen. J Steroid Biochem Mol Biol 123(1–2):8–16

    Article  CAS  Google Scholar 

  • Ortiz de Montellano PR, David SK, Ator MA, Tew D (1988) Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX. Biochemistry 27:5470–5476

    Article  CAS  Google Scholar 

  • Radi R, Thomson L, Rubbo H, Prodanov E (1991a) Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch Biochem Biophys 288(1):112–117

    Article  CAS  Google Scholar 

  • Radi R, Turrens JF, Freeman BA (1991b) Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide. Arch Biochem Biophys 288(1):118–125

    Article  CAS  Google Scholar 

  • Semak I, Naumova M, Korik E, Terekhovich V, Wortsman J, Slominski A (2005) A novel metabolic pathway of melatonin: oxidation by cytochrome c. Biochemistry 44(26):9300–9307

    Article  CAS  Google Scholar 

  • Venditti P, Di Meo S, De Leo T (1996) Effect of thyroid state on characteristics determining the susceptibility to oxidative stress of mitochondrial fractions from rat liver. Cell Physiol Biochem 6(5):283–295

    Article  CAS  Google Scholar 

  • Venditti P, De Leo T, Di Meo S (1999) Determination of tissue susceptibility to oxidative stress by enhanced luminescence technique. Methods Enzymol 300:245–252

    Article  CAS  Google Scholar 

  • Venditti P, Masullo P, Di Meo S (2001) Hemoproteins affect H2O2 removal from rat tissues. Int J Biochem Cell Biol 33(3):293–301

    Article  CAS  Google Scholar 

  • Venditti P, Costagliola IR, Di Meo S (2002) H2O2 production and response to stress conditions by mitochondrial fractions from rat liver. J Bioenerg Biomembr 34(2):115–125

    Article  CAS  Google Scholar 

  • Venditti P, De Rosa R, Di Meo S (2003a) Effect of thyroid state on H2O2 production by rat liver mitochondria. Mol Cell Endocrinol 205(9):185–192

    Article  CAS  Google Scholar 

  • Venditti P, De Rosa R, Di Meo S (2003b) Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissues. Free Radic Biol Med 35(5):485–494

    Article  CAS  Google Scholar 

  • Venditti P, Di Stefano L, Di Meo S (2013) Mitochondrial metabolismo of reactive oxygen species. Mitochondrion 13(2):71–82

    Article  CAS  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  Google Scholar 

  • Zoccarato F, Cavallini L, Alexandre A (2004) Respiration-dependent removal of exogenous H2O2 in brain mitochondria. J Biol Chem 279(6):4166–4174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Venditti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venditti, P., Napolitano, G. & Di Meo, S. Role of enzymatic and non-enzymatic processes in H2O2 removal by rat liver and heart mitochondria. J Bioenerg Biomembr 46, 83–91 (2014). https://doi.org/10.1007/s10863-013-9534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9534-8

Keywords

Navigation