Skip to main content

Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria

Abstract

Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c 1 loss. During Fe2+-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe2+. Avocado oil also decreased ROS generation in Fe2+-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

This is a preview of subscription content, access via your institution.

References

  • Abe Y, El-Masri B, Kimball KT, Pownall H, Reilly CF, Osmundsen K et al (1998) Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler Thromb Vasc Biol 18:723–731

    CAS  Article  Google Scholar 

  • Arnal E, Miranda M, Barcia J, Bosch-Morell F, Romero FJ (2010) Lutein and docosahexaenoic acid prevent cortex lipid peroxidation in streptozotocin-induced diabetic rat cerebral cortex. Neuroscience 166(1):271–278

    CAS  Article  Google Scholar 

  • Ashton OB, Wong M, McGhie TK, Vather R, Wang Y, Requejo-Jackman C et al (2006) Pigments in avocado tissue and oil. J Agric Food Chem 54(26):10151–10158

    CAS  Article  Google Scholar 

  • Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later? Arch Cardiol Mex 80(1):44–47

    Google Scholar 

  • Berry EM (1997) Dietary fatty acids in the management of diabetes mellitus. Am J Clin Nutr 66:991S–997S

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Google Scholar 

  • Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106(34):14385–14390

    CAS  Article  Google Scholar 

  • Bolzán AD, Bianchi MS (2002) Genotoxicity of streptozotocin. Mutat Res 512(2–3):121–134

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  Article  Google Scholar 

  • Burns WC, Twigg SM, Forbes JM, Pete J, Tikellis C, Thallas-Bonke V et al (2006) Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol 17(9):2484–2494

    CAS  Article  Google Scholar 

  • Cantoni L, Gibbs AH, De Matteis F (1981) Loss of heme and hemeoproteins during the generation of superoxide anion and hydrogen peroxide: a pathway not involving production of carbon monoxide. Int J Biochem 13(7):823–830

    CAS  Article  Google Scholar 

  • Clark DL, Hamel FG, Queener SF (1983) Changes in renal phospholipid fatty acids in diabetes mellitus: correlation with changes in adenylate cyclase activity. Lipids 18(10):696–705

    CAS  Article  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda R et al (2009) Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J Bioenerg Biomembr 41(1):15–28

    Article  Google Scholar 

  • Cortés-Rojo C, Estrada-Villagómez M, Calderón-Cortés E, Clemente-Guerrero M, Mejía-Zepeda R, Boldogh I et al (2011) Electron transport chain dysfunction by H2O2 is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria. J Bioenerg Biomembr 43(2):135–147

    Article  Google Scholar 

  • Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M, Berry EA (1999) Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38(48):15807–15826

    CAS  Article  Google Scholar 

  • de Cavanagh EM, Ferder L, Toblli JE, Piotrkowski B, Stella I, Fraga CG et al (2008) Renal mitochondrial impairment is attenuated by AT1 blockade in experimental Type I diabetes. Am J Physiol Heart Circ Physiol 294(1):H456–H465

    Article  Google Scholar 

  • DeRubertis FR, Craven PA (1993) Eicosanoids in the pathogenesis of the functional and structural alterations of the kidney in diabetes. Am J Kidney Dis 22(5):727–735

    CAS  Google Scholar 

  • Devarshi PP, Jamgale NM, Ghule AE, Bodhankar SL, Harsulkar AM (2012) Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin-nicotinamide induced diabetic rats. Genes Nutr. doi:10.1007/s12263-012-0326-2

  • Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51(7):1289–1301

    CAS  Article  Google Scholar 

  • Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102(4):488–496

    CAS  Article  Google Scholar 

  • Duval C, Augé N, Frisach MF, Casteilla L, Salvayre R, Nègre-Salvayre A (2002) Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase. Biochem J 367:889–894

    CAS  Article  Google Scholar 

  • Foss BJ, Sliwka HR, Partali V, Cardounel AJ, Zweier JL, Lockwood SF (2004) Direct superoxide anion scavenging by a highly water-dispersible carotenoid phospholipid evaluated by electron paramagnetic resonance (EPR) spectroscopy. Bioorg Med Chem Lett 14(11):2807–2812

    CAS  Article  Google Scholar 

  • Fu H, Xie B, Ma S, Zhu X, Fan G, Pan S (2011) Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). J Food Comp Anal 24:288–297

    CAS  Article  Google Scholar 

  • Galano A, Vargas R, Martínez A (2010) Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys 12(1):193–200

    CAS  Article  Google Scholar 

  • Garman JH, Mulroney S, Manigrasso M, Flynn E, Maric C (2009) Omega-3 fatty acid rich diet prevents diabetic renal disease. Am J Physiol Renal Physiol 296(2):F306–F316

    CAS  Article  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    CAS  Article  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  Google Scholar 

  • Hallberg EM, Shu Y, Hallberg RL (1993) Loss of mitochondrial hsp60 function: nonequivalent effects on matrix-targeted and intermembrane-targeted proteins. Mol Cell Biol 13(5):3050–3057

    CAS  Google Scholar 

  • Han RM, Zhang JP, Skibsted LH (2012) Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 17(2):2140–2160

    CAS  Article  Google Scholar 

  • Harel S, Salan MA, Kanner J (1988) Iron release from metmyoglobin, methemoglobin and cytochrome c by a system generating hydrogen peroxide. Free Radic Res Commun 5(1):11–19

    CAS  Article  Google Scholar 

  • Hashimoto Y, Yamagishi S-I, Mizukami H, Yabe-Nishimura C, Lim SW, Kwon HM et al (2011) Polyol pathway and diabetic nephropathy revisited: early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J Diabetes Invest 2(2):111–122

    CAS  Article  Google Scholar 

  • Hill S, Hirano K, Shmanai VV, Marbois BN, Vidovic D, Bekish AV et al (2011) Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress. Free Radic Biol Med 50(1):130–138

    CAS  Article  Google Scholar 

  • Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV et al (2012) Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med 53(4):893–906

    CAS  Article  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids, vol 2., pp 51–98

    Google Scholar 

  • Holman RT, Johnson SB, Gerrard JM, Mauer SM, Kupcho-Sandberg S, Brown DM (1983) Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc Natl Acad Sci USA 80(8):2375–2379

    CAS  Article  Google Scholar 

  • Johnson WT, Evans GW (1984) Effects of the interrelationship between dietary protein and minerals on tissue content of trace metals in streptozotocin-diabetic rats. J Nutr 114(1):180–190

    CAS  Google Scholar 

  • Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S et al (2008) Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 233(1):4–11

    CAS  Article  Google Scholar 

  • Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S241–S245

    CAS  Article  Google Scholar 

  • Lidebjer C, Leanderson P, Ernerudh J, Jonasson L (2007) Low plasma levels of oxygenated carotenoids in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 17(6):448–456

    CAS  Article  Google Scholar 

  • Lo HM, Tsai YJ, Du WY, Tsou CJ, Wu WB (2012) A naturally occurring carotenoid, lutein, reduces PDGF and H2O2 signaling and compromised migration in cultured vascular smooth muscle cells. J Biomed Sci 19(1):18

    CAS  Article  Google Scholar 

  • López Ledesma R, Frati Munari AC, Hernández Domínguez BC, Cervantes Montalvo S, Hernández Luna MH, Juárez C et al (1996) Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch Med Res 27(4):519–523

    Google Scholar 

  • Lu QY, Arteaga JR, Zhang Q, Huerta S, Go VL, Heber D (2005) Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. J Nutr Biochem 16(1):23–30

    CAS  Article  Google Scholar 

  • Matsuno-Yagi A, Hatefi Y (1996) Ubiquinol-cytochrome c oxidoreductase. The redoxreactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficientsystems. J Biol Chem 271:6164–6171

    CAS  Article  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    Google Scholar 

  • Munusamy S, MacMillan-Crow LA (2009) Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med 46(8):1149–1157

    CAS  Article  Google Scholar 

  • Munusamy S, Saba H, Mitchell T, Megyesi JK, Brock RW, Macmillan-Crow LA (2009) Alteration of renal respiratory complex-III during experimental type-1 diabetes. BMC Endocr Disord 9:2

    Article  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al (2010) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Google Scholar 

  • Noh H, King GL (2007) The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl 106:S49–S53

    CAS  Article  Google Scholar 

  • North JA, Spector AA, Buettner GR (1992) Detection of lipid radicals by electron paramagnetic resonance spin trapping using intact cells enriched with polyunsaturated fatty acid. J Biol Chem 267(9):5743–5746

    CAS  Google Scholar 

  • Ochoa JJ, Quiles JL, Ibáñez S, Martínez E, López-Frías M, Huertas JR, Mataix J (2003) Aging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues. J Bioenerg Biomembr 35(3):267–275

    CAS  Article  Google Scholar 

  • Ochoa JJ, Pamplona R, Ramirez-Tortosa MC, Granados-Principal S, Perez-Lopez P, Naudí A et al (2011) Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q10. Free Radic Biol Med 50(9):1053–1064

    CAS  Article  Google Scholar 

  • Pamplona R, Portero-Otín M, Riba D, Ruiz C, Prat J, Bellmunt MJ et al (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 39(10):1989–1994

    CAS  Google Scholar 

  • Parinandi NL, Thompson EW, Schmid HH (1990) Diabetic heart and kidney exhibit increased resistance to lipid peroxidation. Biochim Biophys Acta 1047(1):63–69

    CAS  Article  Google Scholar 

  • Quiles JL, Martínez E, Ibáñez S, Ochoa JJ, Martín Y, López-Frías M et al (2002) Ageing-related tissue-specific alterations in mitochondrial composition and function are modulated by dietary fat type in the rat. J Bioenerg Biomembr 34(6):517–524

    CAS  Article  Google Scholar 

  • Quiles JL, Ochoa JJ, Huertas JR, Mataix J (2004) Mitochondrial aspects of aging. Role of dietary fat type and oxidative stress. Endocrinol Nutr 51(3):107–120

    CAS  Article  Google Scholar 

  • Ramsammy LS, Haynes B, Josepovitz C, Kaloyanides GJ (1993) Mechanism of decreased arachidonic acid in the renal cortex of rats with diabetes mellitus. Lipids 28(5):433–439

    CAS  Article  Google Scholar 

  • Raza H, Prabu SK, Robin MA, Avadhani NG (2004) Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 53(1):185–194

    CAS  Article  Google Scholar 

  • Raza H, Prabu SK, John A, Avadhani NG (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci 12(5):3133–3147

    CAS  Article  Google Scholar 

  • Riedl E, Pfister F, Braunagel M, Brinkkötter P, Sternik P, Deinzer M et al (2011) Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell Physiol Biochem 28(2):279–288

    CAS  Article  Google Scholar 

  • Rodenburg RJT, Smeitink JAM (2012) Mitochondrial medicine. In: Civjan N (ed) Chemical biology: approaches to drug discovery and development to targeting disease. John Wiley & Sons, New Jersey, pp 445–460

    Chapter  Google Scholar 

  • Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI et al (2005) Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol 289(2):F420–F430

    CAS  Article  Google Scholar 

  • Saavedra-Molina A, Devlin TM (1997) Effect of extra- and intra-mitochondrial calcium on citrulline synthesis. Amino Acids 12(3–4):293–298

    CAS  Article  Google Scholar 

  • Salazar MJ, El Hafidi M, Pastelin G, Ramírez-Ortega MC, Sánchez-Mendoza MA (2005) Effect of an avocado oil-rich diet over an angiotensin II-induced blood pressure response. J Ethnopharmacol 98(3):335–338

    CAS  Article  Google Scholar 

  • Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K et al (2010) Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53(5):971–979

    CAS  Article  Google Scholar 

  • Shin CS, Lee MK, Park KS, Kim SY, Cho BY, Lee HK et al (1995) Insulin restores fatty acid composition earlier in liver microsomes than erythrocyte membranes in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 29(2):93–98

    CAS  Article  Google Scholar 

  • Sirtori CR, Crepaldi G, Manzato E, Mancini M, Rivellese A, Paoliett R et al (1998) One-year treatment with ethyl esters of n-3 fatty acids in patients with hypertriglyceridemia and glucose intolerance: reduced triglyceridemia, total cholesterol and increased HDL-C without glycemic alteration. Atherosclerosis 137:419–427

    CAS  Article  Google Scholar 

  • Sujak A, Gabrielska J, Grudziński W, Borc R, Mazurek P, Gruszecki WI (1999) Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys 371(2):301–307

    CAS  Article  Google Scholar 

  • Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30(7):1926–1933

    CAS  Article  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50(6):537–546

    CAS  Google Scholar 

  • Tyurina YY, Tungekar MA, Jung MY, Tyurin VA, Greenberger JS, Stoyanovsky DA et al (2012) Mitochondria targeting of non-peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: role of cardiolipin remodeling. FEBS Lett 586(3):235–241

    CAS  Article  Google Scholar 

  • Unlu NZ, Bohn T, Clinton SK, Schwartz SJ (2005) Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr 135(3):431–436

    CAS  Google Scholar 

  • Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL (2011) The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 22(2):262–273

    CAS  Article  Google Scholar 

  • Velasquez MT, Bhathena SJ, Ranich T, Schwartz AM, Kardon DE, Ali AA et al (2003) Dietary flaxseed meal reduces proteinuria and ameliorates nephropathy in an animal model of type II diabetes mellitus. Kidney Int 64(6):2100–2107

    CAS  Article  Google Scholar 

  • Yosefy C, Viskoper JR, Laszt A, Priluk R, Guita E, Varon D et al (1999) The effect of fish oil on hypertension, plasma lipids and hemostasis in hypertensive, obese, dyslipidemic patients with and without diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 61:83–87

    CAS  Article  Google Scholar 

  • Zhang H, Zhang HM, Wu LP, Tan DX, Kamat A, Li YQ (2011) Impaired mitochondrial complex III and melatonin responsive reactive oxygen species generation in kidney mitochondria of db/db mice. J Pineal Res 51(3):338–344

    CAS  Article  Google Scholar 

  • Zhu H, Bannenberg GL, Moldéus P, Shertzer HG (1994) Oxidation pathways for the intracellular probe 2′,7'-dichlorofluorescein. Arch Toxicol 68(9):582–587

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cortés-Rojo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ortiz-Avila, O., Sámano-García, C.A., Calderón-Cortés, E. et al. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria. J Bioenerg Biomembr 45, 271–287 (2013). https://doi.org/10.1007/s10863-013-9502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9502-3

Keywords

  • Reactive Oxygen Species
  • Persea americana
  • Iron
  • Cytochromes
  • Diabetic nephropathy