Skip to main content
Log in

Platelet oxygen consumption as a peripheral blood marker of brain energetics in a mouse model of severe neurotoxicity

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Interactions of chemicals with cerebral cellular systems are often accompanied by similar changes involving components in non-neural tissues. On this basis, indirect strategies have been developed to investigate neural cell function parameters by methods using accessible cells, including platelets and/or peripheral blood lymphocytes. Therefore, here it was investigated whether peripheral blood markers may be useful for assessing the central toxic effects of methylmercury (MeHg). For this purpose, we investigated platelet mitochondrial physiology in a well-established mouse model of MeHg-induced neurotoxicity, and correlated this peripheral activity with behavioural and central biochemical parameters. In order to characterize the cortical toxicity induced by MeHg (20 and 40 mg/L in drinking water, 21 days), the behavioral parameter namely, short-term object recognition, and the central mitochondrial impairment assessed by measuring respiratory complexes I-IV enzyme activities were determined in MeHg-poisoned animals. Neurotoxicity induced by MeHg exposure provoked compromised cortical activity (memory impairment) and reduced NADH dehydrogenase, complex II and II-III activities in the cerebral cortex. These alterations correlated with impaired systemic platelet oxygen consumption of intoxicated mice, which was characterized by reduced electron transfer activity and uncoupled mitochondria. The data brought here demonstrated that impaired systemic platelet oxygen consumption is a sensitive and non-invasive marker of the brain energy deficits induced by MeHg poisoning. Finally, brain and platelets biochemical alterations significantly correlated with cognitive behavior in poisoned mice. Therefore, it could be proposed the use of platelet oxygen consumption as a peripheral blood marker of brain function in a mouse model MeHg-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguiar AS Jr, Araujo AL, da-Cunha TR, Speck AE, Ignacio ZM, De-Mello N et al (2009) Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull 79(6):452–457

    Article  CAS  Google Scholar 

  • Ally A, Buist R, Mills P, Reuhl K (1993) Effects of methylmercury and trimethyltin on cardiac, platelet, and aorta eicosanoid biosynthesis and platelet serotonin release. Pharmacol Biochem Behav 44(3):555–563

    Article  CAS  Google Scholar 

  • Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40(3):285–291

    Article  CAS  Google Scholar 

  • Borges VC, Nogueira CW (2008) The role of thiol-reducing agents on modulation of glutamate binding induced by heavy metals in platelets. Toxicol In Vitro 22(2):438–443

    Article  CAS  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316

    Article  CAS  Google Scholar 

  • Castoldi AF, Blandini F, Randine G, Samuele A, Manzo L, Coccini T (2006) Brain monoaminergic neurotransmission parameters in weanling rats after perinatal exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153). Brain Res 1112(1):91–98

    Article  CAS  Google Scholar 

  • Chakrabarti SK, Loua KM, Bai C, Durham H, Panisset JC (1998) Modulation of monoamine oxidase activity in different brain regions and platelets following exposure of rats to methylmercury. Neurotoxicol Teratol 20(2):161–168

    Article  CAS  Google Scholar 

  • Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32(6):447–470

    Article  CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34(4):369–403

    Article  CAS  Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23

    Article  CAS  Google Scholar 

  • Coccini T, Manzo L, Debes F, Steuerwald U, Weihe P, Grandjean P (2009) No changes in lymphocyte muscarinic receptors and platelet monoamine oxidase-B examined as surrogate central nervous system biomarkers in a Faroese children cohort prenatally exposed to methylmercury and polychlorinated biphenyls. Biomarkers 14(2):67–76

    Article  CAS  Google Scholar 

  • da Costa Ferreira G, Viegas CM, Schuck PF, Latini A, Dutra-Filho CS, Wyse AT et al (2005) Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci 23(8):687–693

    Article  Google Scholar 

  • de Freitas AS, Funck VR, Rotta Mdos S, Bohrer D, Morschbacher V, Puntel RL et al (2009) Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull 79(1):77–84

    Article  Google Scholar 

  • Dietrich MO, Mantese CE, dos Anjos G, Souza DO, Farina M (2005) Motor impairment induced by oral exposure to methylmercury in adult mice. Environ Toxicol Pharmacol 19:169–175

    Article  CAS  Google Scholar 

  • Eto K, Takizawa Y, Akagi H, Haraguchi K, Asano S, Takahata N et al (1999) Differential diagnosis between organic and inorganic mercury poisoning in human cases–the pathologic point of view. Toxicol Pathol 27(6):664–671

    Article  CAS  Google Scholar 

  • Farina M, Frizzo ME, Soares FA, Schwalm FD, Dietrich MO, Zeni G et al (2003) Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett 144(3):351–357

    Article  CAS  Google Scholar 

  • Farina M, Aschner M, & Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153(1):23–36

    Article  CAS  Google Scholar 

  • Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia Pomblum SC et al (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102(1):22–28

    Article  CAS  Google Scholar 

  • Franco JL, Braga Hde C, Nunes AK, Ribas CM, Stringari J, Silva AP et al (2007) Lactational exposure to inorganic mercury: evidence of neurotoxic effects. Neurotoxicol Teratol 29(3):360–367

    Article  CAS  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R et al (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47(4):449–457

    Article  CAS  Google Scholar 

  • Glaser V, Leipnitz G, Straliotto MR, Oliveira J, dos Santos VV, Wannmacher CM et al (2010a) Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury. Neurotoxicology 31(5):454–460

    Article  CAS  Google Scholar 

  • Glaser V, Nazari EM, Muller YM, Feksa L, Wannmacher CM, Rocha JB et al (2010b) Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci 28(7):631–637

    Article  CAS  Google Scholar 

  • Gnaiger E (2007) Mitochondrial pathways and respiratory control. OROBOROS MiPNet Publications, Innsbruck

    Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K et al (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428

    Article  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 77(2):165–172

    Article  CAS  Google Scholar 

  • Grandjean P, Budtz-Jorgensen E, White RF, Jorgensen PJ, Weihe P, Debes F et al (1999) Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am J Epidemiol 150(3):301–305

    Article  CAS  Google Scholar 

  • Hunter D, Russell DS (1954) Focal cerebellar and cerebellar atrophy in a human subject due to organic mercury compounds. J Neurol Neurosurg Psychiatry 17(4):235–241

    Article  CAS  Google Scholar 

  • Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007) Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11(3–4):241–260

    Article  CAS  Google Scholar 

  • Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ et al (2005) Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86(1–2):188–199

    Article  CAS  Google Scholar 

  • Limke TL, Atchison WD (2002) Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol 178(1):52–61

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Lucena GM, Franco JL, Ribas CM, Azevedo MS, Meotti FC, Gadotti VM et al (2007) Cipura paludosa extract prevents methyl mercury-induced neurotoxicity in mice. Basic Clin Pharmacol Toxicol 101(2):127–131

    Article  CAS  Google Scholar 

  • Maia Cdo S, Ferreira VM, Diniz JS, Carneiro FP, de Sousa JB, da Costa ET et al (2010) Inhibitory avoidance acquisition in adult rats exposed to a combination of ethanol and methylmercury during central nervous system development. Behav Brain Res 211(2):191–197

    Article  Google Scholar 

  • Manzo L, Castoldi AF, Coccini T, Rossi AD, Nicotera P, Costa LG (1995) Mechanisms of neurotoxicity: applications to human biomonitoring. Toxicol Lett 77(1–3):63–72

    Article  CAS  Google Scholar 

  • Manzo L, Castoldi AF, Coccini T, Prockop LD (2001) Assessing effects of neurotoxic pollutants by biochemical markers. Environ Res 85(1):31–36

    Article  CAS  Google Scholar 

  • Martins RP, Braga HC, da Silva AP, Dalmarco JB, de Bem AF, dos Santos AR et al (2009) Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 47(3):645–649

    Article  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776

    Article  CAS  Google Scholar 

  • Murai T, Okuda S, Tanaka T, Ohta H (2007) Characteristics of object location memory in mice: behavioral and pharmacological studies. Physiol Behav 90(1):116–124

    Article  CAS  Google Scholar 

  • Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3(1):35–40

    Article  CAS  Google Scholar 

  • NTP (2006) (National Toxicology Program)

  • O’Kusky J (1983) Methylmercury poisoning of the developing nervous system: morphological changes in neuronal mitochondria. Acta Neuropathol 61(2):116–122

    Article  Google Scholar 

  • Onishchenko N, Tamm C, Vahter M, Hokfelt T, Johnson JA, Johnson DA et al (2007) Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicol Sci 97(2):428–437

    Article  CAS  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  Google Scholar 

  • Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JB et al (2011) Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol Appl Pharmacol 252(1):28–35

    Article  CAS  Google Scholar 

  • Schalock RL, Brown WJ, Kark RA, Menon NK (1981) Perinatal methylmercury intoxication: behavioral effects in rats. Dev Psychobiol 14(3):213–219

    Article  CAS  Google Scholar 

  • Sirois JE, Atchison WD (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl Pharmacol 167(1):1–11

    Article  CAS  Google Scholar 

  • Sjovall F, Morota S, Hansson MJ, Friberg H, Gnaiger E, Elmer E (2010) Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit Care 14(6):R214

    Article  Google Scholar 

  • Skerfving S (1974) Methylmercury exposure, mercury levels in blood and hair, and health status in Swedes consuming contaminated fish. Toxicology 2(1):3–23

    Article  CAS  Google Scholar 

  • Yoshino Y, Mozai T, Nakao K (1966) Biochemical changes in the brain in rats poisoned with an alkymercury compound, with special reference to the inhibition of protein synthesis in brain cortex slices. J Neurochem 13(11):1223–1230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Latini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula Martins, R., Glaser, V., da Luz Scheffer, D. et al. Platelet oxygen consumption as a peripheral blood marker of brain energetics in a mouse model of severe neurotoxicity. J Bioenerg Biomembr 45, 449–457 (2013). https://doi.org/10.1007/s10863-013-9499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9499-7

Keywords

Navigation