Skip to main content
Log in

Administration of a murine diet supplemented with conjugated linoleic acid increases the expression and activity of hepatic uncoupling proteins

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (~2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD+/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberici LC, Oliveira HC, Patrício PR, Kowaltowski AJ, Vercesi AE (2006) Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K + channel activity. Gastroenterology 131:1228–1234

    Article  CAS  Google Scholar 

  • Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM, Benassi M et al (2010) Ambient mass spectrometry: bringing MS into the real world. Anal Bioanal Chem 398:265–294

    Article  CAS  Google Scholar 

  • Alberici LC, Oliveira HC, Catharino RR, Vercesi AE, Eberlin MN, Alberici RM (2011) Distinct hepatic lipid profile of hypertriglyceridemic mice determined by easy ambient sonic-spray ionization mass spectrometry. Anal Bioanal Chem 401:1651–1659

    Article  Google Scholar 

  • Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130:1548–1554

    CAS  Google Scholar 

  • Banni S, Carta G, Angioni E, Murru E, Scanu P, Melis MP et al (2001) Distribution of conjugated linoleic acid and metabolites in different lipid fractions in the rat liver. J Lipid Res 42:1056–1061

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cherian G, Holsonbake TB, Goeger MP, Bildfell R (2002) Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens. Lipids 37:751–757

    Article  CAS  Google Scholar 

  • Choi JS, Koh IU, Jung MH, Song J (2007) Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat diet. Br J Nutr 98:264–275

    Article  CAS  Google Scholar 

  • DeLany JP, West DB (2000) Changes in body composition with conjugated linoleic acid. J Am Coll Nutr 19:487S–493S

    CAS  Google Scholar 

  • Ealey KN, El-Sohemy A, Archer MC (2002) Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats. Lipids 37:853–861

    Article  CAS  Google Scholar 

  • Echtay KS, Murphy MP, Smith RA, Talbot DA, Brand MD (2002a) Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 277:47129–47135

    Article  CAS  Google Scholar 

  • Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002b) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    Article  CAS  Google Scholar 

  • Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–257

    Article  CAS  Google Scholar 

  • Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    Article  CAS  Google Scholar 

  • Garlid KD, Jabůrek M, Jezek P, Varecha M (2000) How do uncoupling proteins uncouple? Biochim Biophys Acta 1459:383–389

    Article  CAS  Google Scholar 

  • Gavino VC, Gavino G, Leblanc MJ, Tuchweber B (2000) An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 130:27–29

    CAS  Google Scholar 

  • Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP (2007) Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol 102:399–408

    Article  CAS  Google Scholar 

  • Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J Nutr 130:2285–2291

    CAS  Google Scholar 

  • Haddad R, Sparrapan R, Eberlin MN (2006) Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun Mass Spectrom 20:2901–2905

    Article  CAS  Google Scholar 

  • Haddad R, Sparrapan R, Kotiaho T, Eberlin MN (2008) Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. Anal Chem 80:898–903

    Article  CAS  Google Scholar 

  • Halade GV, Rahman MM, Fernandes G (2009) Effect of CLA isomers and their mixture on aging C57Bl/6J mice. Eur J Nutr 48:409–418

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Jaudszus A, Moeckel P, Hamelmann E, Jahreis G (2010) Trans-10, cis-12-CLA-caused lipodystrophy is associated with profound changes of fatty acid profiles of liver, white adipose tissue and erythrocytes in mice: possible link to tissue-specific alterations of fatty acid desaturation. Ann Nutr Metab 57:103–111

    Article  CAS  Google Scholar 

  • Jezek P, Garlid KD (1998) Mammalian mitochondrial uncoupling proteins. Int J Biochem Cell Biol 30:1163–1168

    Article  CAS  Google Scholar 

  • Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M (2010) Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem 21:171–179

    Article  CAS  Google Scholar 

  • Konig B, Spielmann J, Haase K, Brandsch C, Kluge H, Stangl GI et al (2008) Effects of fish oil and conjugated linoleic acids on expression of target genes of PPAR alpha and sterol regulatory element-binding proteins in the liver of laying hens. Br J Nutr 100:355–363

    Article  Google Scholar 

  • Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477S

    CAS  Google Scholar 

  • Lin H, Boylston TD, Chang MJ, Luedecke LO, Shultz TD (1995) Survey of the conjugated linoleic acid contents of dairy products. J Dairy Sci 78:2358–2365

    Article  CAS  Google Scholar 

  • Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, Leesnitzer LA, Belury MA (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 40:1426–1433

    CAS  Google Scholar 

  • Nicholls DG (1976) The bioenergetics of brown adipose tissue mitochondria. FEBS Lett 61:103–110

    Article  CAS  Google Scholar 

  • Ohnuki K, Haramizu S, Ishihara K, Fushiki T (2001a) Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci Biotechnol Biochem 65:2200–2204

    Article  CAS  Google Scholar 

  • Ohnuki K, Haramizu S, Oki K, Ishihara K, Fushiki T (2001b) A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids 36:583–587

    Article  CAS  Google Scholar 

  • Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129:2037–2042

    CAS  Google Scholar 

  • Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  CAS  Google Scholar 

  • Peters JM, Park Y, Gonzalez FJ, Pariza MW (2001) Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor alpha-null mice. Biochim Biophys Acta 1533:233–242

    Article  CAS  Google Scholar 

  • Rahman MM, Bhattacharya A, Banu J, Fernandes G (2007) Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 18:467–474

    Article  CAS  Google Scholar 

  • Rakhshandehroo M, Hooiveld G, Müller M, Kersten S (2009) Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS One 4:e6796

    Article  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for the carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  Google Scholar 

  • Ribot J, Portillo MP, Picó C, Macarulla MT, Palou A (2007) Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet. Br J Nutr 97:1074–1082

    Article  CAS  Google Scholar 

  • Roche HM, Noone E, Sewter C, Mc BS, Savage D, Gibney MJ, O'Rahilly S, Vidal-Puig AJ (2002) Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes 51:2037–2044

    Article  CAS  Google Scholar 

  • Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157

    Article  CAS  Google Scholar 

  • Samec S, Seydoux J, Dulloo AG (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 12:715–724

    CAS  Google Scholar 

  • Schild L, Reinheckel T, Wiswedel I, Augustin W (1997) Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification. Biochem J 15:205–210

    Google Scholar 

  • Schönfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–241

    Article  Google Scholar 

  • Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    CAS  Google Scholar 

  • Semighini CP, Marins M, Goldman MHS, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcripition-PCR assay. Appl Environ Microbiol 68:1351–1357

    Article  CAS  Google Scholar 

  • Simas RC, Catharino RR, Cunha IBS, Cabral EC, Barrera-Arellano D, Eberlin MN et al (2010) Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry. Analyst 135:735–744

    Article  Google Scholar 

  • Takahashi Y, Kushiro M, Shinohara K, Ide T (2002) Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comp Biochem Physiol B Biochem Mol Biol 133:395–404

    Article  Google Scholar 

  • Terpstra AH (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr 79:352–361

    CAS  Google Scholar 

  • Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H et al (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542

    Article  CAS  Google Scholar 

  • Tsuboyama-Kasaoka N, Miyazaki H, Kasaoka S, Ezaki O (2003) Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in mice. J Nutr 133:1793–1799

    CAS  Google Scholar 

  • Wang YW, Jones PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28:941–955

    Article  CAS  Google Scholar 

  • West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672

    CAS  Google Scholar 

  • West DB, Blohm FY, Truett AA, DeLany JP (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130:2471–2477

    CAS  Google Scholar 

  • World Health Organization, Programmes and Projects, Nutrition topics, Controlling the global obesity epidemic. Available from: http://www.who.int/nutrition/topics/obesity/en. Accessed April 5, 2012

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 15:162–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane C. Alberici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A.F., Sá, L.L., Reis, F.H.Z. et al. Administration of a murine diet supplemented with conjugated linoleic acid increases the expression and activity of hepatic uncoupling proteins. J Bioenerg Biomembr 44, 587–596 (2012). https://doi.org/10.1007/s10863-012-9463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9463-y

Keywords

Navigation