Skip to main content
Log in

Experimental results using 3-bromopyruvate in mesothelioma: in vitro and in vivo studies

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

An Erratum to this article was published on 28 October 2012

Abstract

Over many years we have taken advantage of the special metabolism of cancer cells involving an increased consumption of glucose associated with lactic acid production even in the presence of oxygen, a phenomenon referred to as the “Warburg effect”, to counteract cancer cell growth. We have tested 3-bromopyruvate (3-BrPA), an inhibitor of pyruvate-associated reactions. Firstly, we tested this agent, in vitro, in two mesothelioma cell lines. Cellular response would appear to depend on the mode of administration (immediately or 24 h after seeding). Depending on the line, 3-BrPA induced a cytostatic or cytotoxic effect. This effect was accompanied by cell death induction even in cells highly refractory to cisplatin. Mitochondrial apoptotic death appeared to involve both lines; however, a different death pathway such as necrosis cannot be excluded. Interestingly, 3-BrPA leads to a diminution of the expression of the anti-apotptoic protein Mcl-1. We then tested 3-BrPA in vivo. Survival of nude mice bearing human mesothelioma was significantly prolonged (p < 0.0001). Toxicity and clinical studies should be performed to test 3- BrPA as local therapy for patients suffering from pleural or peritoneal mesothelioma. Association with cisplatin should be particularly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker JP, Rabin BR (1969) Effects of bromopyruvate on the control and catalytic properties of glutamate dehydrogenase. Eur J Biochem 11(1):154–159

    Article  CAS  Google Scholar 

  • Burz C, Berindan-Neagoe I, Balacescu O, Irimie A (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 48(6):811–821

    Article  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  Google Scholar 

  • Campbell PN (2000) Biochemistry illustrated. Churchill Livingstone,

  • Carretta A, Landoni C, Melloni G, Ceresoli GL, Compierchio A, Fazio F et al (2000) 18-FDG positron emission tomography in the evaluation of malignant pleural diseases—a pilot study. Eur J Cardiothorac Surg 17(4):377–383

    Article  CAS  Google Scholar 

  • Chang GG, Hsu RY (1973) The substrate analog bromopyruvate as a substrate, an inhibitor and an alkylating agent of malic enzyme of pigeon liver. Biochem Biophys Res Commun 55(3):580–587

    Article  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

    Article  CAS  Google Scholar 

  • Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56

    Article  CAS  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956

    Article  CAS  Google Scholar 

  • Deberardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3):313–324

    Article  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61

    Article  CAS  Google Scholar 

  • Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J Biol Chem 218(2):607–616

    CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29(12):4909–4918

    CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao P et al (2010) 3-Bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 11(5):510–517

    Article  CAS  Google Scholar 

  • Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4(3):449–457

    Article  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  CAS  Google Scholar 

  • Gruning NM, Lehrach H, Ralser M (2010) Regulatory crosstalk of the metabolic network. Trends Biochem Sci 35(4):220–227

    Article  Google Scholar 

  • Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825(1):111–116

    CAS  Google Scholar 

  • Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2(1):94–101

    Article  Google Scholar 

  • Israël M (2004) Four hidden metamorphoses: a remark on blood, muscle, mental diseases and cancer. John Libbey Eurotext

  • Israël M (2005) Cancer: a dysmethylation syndrome. John Libbey Eurotext

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324(1):269–275

    Article  CAS  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    Article  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185(8):1481–1486

    Article  CAS  Google Scholar 

  • Lelli JL Jr, Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25(6):694–702

    Article  CAS  Google Scholar 

  • Lincet H, Guével B, Pineau C, Allouche S, Lemoisson E, Poulain L, et al. (2011) Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: Toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. J Proteomics, [Epub ahead of print]

  • Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, Ortega AD, Berrendero JR, Pozo-Rodriguez F et al (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67(19):9013–9017

    Article  CAS  Google Scholar 

  • Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9(9):1084–1101

    Article  CAS  Google Scholar 

  • Mazurek S (2003) The tumor metabolome. Anticancer Res 23:1149–1154

    CAS  Google Scholar 

  • Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(7):969–980

    Article  CAS  Google Scholar 

  • Olovnikov IA, Kravchenko JE, Chumakov PM (2009) Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 19(1):32–41

    Article  CAS  Google Scholar 

  • Papandreou I, Goliasova T, Denko NC (2011) Anticancer drugs that target metabolism: is dichloroacetate the new paradigm? Int J Cancer 128(5):1001–1008

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182

    Article  CAS  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555(1–3):14–20

    CAS  Google Scholar 

  • Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol, 2(49): doi:10.3389

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254(8):2669–2676

    CAS  Google Scholar 

  • Samudio I, Fiegl M, Andreeff M (2009) Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 69(6):2163–2166

    Article  CAS  Google Scholar 

  • Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U et al (2003) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24(9):1461–1466

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  Google Scholar 

  • Varin E, Denoyelle C, Brotin E, Meryet-Figuiere M, Giffard F, Abeilard E et al (2010) Downregulation of Bcl-xL and Mcl-1 is sufficient to induce cell death in mesothelioma cells highly refractory to conventional chemotherapy. Carcinogenesis 31(6):984–993

    Article  CAS  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Constable & Co. Ltd, London

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  Google Scholar 

  • Warr MR, Shore GC (2008) Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med 8(2):138–147

    Article  CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  CAS  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305

    Article  CAS  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    CAS  Google Scholar 

  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  Google Scholar 

  • Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–63406

    Article  CAS  Google Scholar 

  • Zhang X, Varin E, Allouche S, Lu Y, Poulain L, Icard P (2009a) Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res 29(4):1249–1254

    CAS  Google Scholar 

  • Zhang X, Varin E, Briand M, Allouche S, Heutte N, Schwartz L et al (2009b) Novel therapy for malignant pleural mesothelioma based on anti-energetic effect: an experimental study using 3-Bromopyruvate on nude mice. Anticancer Res 29(4):1443–1448

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Icard Philippe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippe, I., Xiao-Dong, Z., Edwige, L. et al. Experimental results using 3-bromopyruvate in mesothelioma: in vitro and in vivo studies. J Bioenerg Biomembr 44, 81–90 (2012). https://doi.org/10.1007/s10863-012-9415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9415-6

Keywords

Navigation