3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects

Abstract

Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1–18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H2O2 scavenging effect to exogenous H2O2, while lactate had no scavenging effect. 3BP induced H2O2 production. Pyruvate protected against H2O2-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

This is a preview of subscription content, access via your institution.

References

  1. El Sayed SM, Abou El-Magd RM, Shishido Y, Chung SP, Sakai T, Watanabe H et al (2012) D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. Cancer Gene Therapy 19:1–18

    Article  CAS  Google Scholar 

  2. Kawazoe T, Park HK, Iwana S, Tsuge H, Fukui K (2007) Human D-amino acid oxidase: an update and review. Chem Rec 7(5):305–315

    Article  CAS  Google Scholar 

  3. Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP et al (2010a) The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 24(7):1055–1067

    Article  CAS  Google Scholar 

  4. Abou El-Magd RM, Sasaki C, Kawazoe T, El Sayed SM, Yorita K, Shishido Y et al (2010b) Bioprocess development of the production of the mutant P-219-L human D-amino acid oxidase for high soluble fraction expression in recombinant Escherichia coli. Biochem Eng J 52(2–3):236–247

    Article  CAS  Google Scholar 

  5. Zorzano A, Fandos C, Palacín M (2000) Role of plasma membrane transporters in muscle metabolism. Biochem J 349:667–688

    CAS  Google Scholar 

  6. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  Google Scholar 

  7. Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560

    Article  Google Scholar 

  8. Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M, et al. (2011) Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion. Cancer Research

  9. Mac M, Nałecz KA (2003) Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int 43(5):305–309

    Article  CAS  Google Scholar 

  10. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell and Tissue Research 310(3):257–270

    Article  CAS  Google Scholar 

  11. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819

    Article  CAS  Google Scholar 

  12. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–3453

    Article  CAS  Google Scholar 

  13. Yabu M, Shime H, Hara H, Saito T, Matsumoto M, Seya T et al (2011) IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid. Int Immunol 23(1):29–41

    Article  CAS  Google Scholar 

  14. Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16):2195–2204

    CAS  Google Scholar 

  15. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63(14):3847–3854

    CAS  Google Scholar 

  16. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223

    Article  CAS  Google Scholar 

  17. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786

    Article  CAS  Google Scholar 

  18. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Article  CAS  Google Scholar 

  19. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA et al (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94(13):6658–6663

    Article  CAS  Google Scholar 

  20. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    Article  CAS  Google Scholar 

  21. Desagher S, Glowinski J, Prémont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17(23):9060–9067

    CAS  Google Scholar 

  22. Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M et al (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273(9):1975–1988

    Article  Google Scholar 

  23. Zhang X, Varin E, Allouche S, Lu Y, Poulain L, Icard P (2009) Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res 29(4):1249–1254

    CAS  Google Scholar 

  24. Halabe Bucay A (2009) Hypothesis proved…citric acid (citrate) does improve cancer: a case of a patient suffering from medullary thyroid cancer. Medical Hypotheses 73(2):271

    Article  Google Scholar 

  25. Lu Y, Zhang X, Zhang H, Lan J, Huang G, Varin E et al (2011) Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma? Anticancer Res 31(3):797–805

    CAS  Google Scholar 

  26. Nagoba BS, Punpale AS, Ayachit R, Gandhi RC, Wadher BJ (2011) Citric acid treatment of postoperative wound in an operated case of synovial sarcoma of the knee. Int Wound J 8(4):425–427

    Article  Google Scholar 

  27. Yousefi S, Owens JW, Cesario TC (2004) Citrate shows specific, dose-dependent lympholytic activity in neoplastic cell lines. Leukemia & Lymphoma 45(8):1657–1665

    Article  CAS  Google Scholar 

  28. Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S et al (2006) Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem 139(2):295–304

    Article  CAS  Google Scholar 

  29. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324

    Article  CAS  Google Scholar 

  30. Shankardas J, Patil RV, Vishwanatha JK (2010) Effect of down-regulation of aquaporins in human corneal endothelial and epithelial cell lines. Mol Vis 16:1538–1548

    CAS  Google Scholar 

  31. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR (2009) Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418(1):29–37

    Article  CAS  Google Scholar 

  32. Chung SP, Sogabe K, Park HK, Song Y, Ono K, Abou El-Magd RM et al (2010) Potential cytotoxic effect of hydroxypyruvate produced from D-serine by astroglial D-amino acid oxidase. J Biochem 148(6):743–753

    Article  CAS  Google Scholar 

  33. Robert K, Murray Daryl K, Granner Peter A, Mayes and Victor Rodwell W (2003) Harper’s illustrated biochemistry. (26th edition), Overview of Metabolism (pp. 122–127). Lange Medical Books/McGraw-Hill Medical Publishing Division

  34. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173(1):83–91

    Article  CAS  Google Scholar 

  35. Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I et al (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 12:4909–4918

    Google Scholar 

  36. Nakano A, Tsuji D, Miki H, Cui Q, El Sayed SM, Ikegame A, et al. (2011) Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells. PLoS One, 6(11)

  37. Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q (2008) Merlin is a potent inhibitor of glioma growth. Cancer Res 68(14):5733–5742

    Article  CAS  Google Scholar 

  38. Mohri M, Nitta H, Yamashita J (2000) Expression of multidrug resistance-associated protein (MRP) in human gliomas. Journal of Neurooncology 49(2):105–115

    Article  CAS  Google Scholar 

  39. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    CAS  Google Scholar 

  40. Baierlein JL, Foster JM (1968) Studies on the energy metabolism of human leukocytes II Mechanism of the Pasteur effect in human leukocytes. Blood 32(3):412–422

    CAS  Google Scholar 

  41. Krug AW, Völker K, Dantzler WH, Silbernagl S (2007) Why is D-serine nephrotoxic and alpha-aminoisobutyric acid protective? American Journal of Physiology: Renal Physiology 293(1):382–390

    Article  Google Scholar 

  42. Orozco-Ibarra M, Medina-Campos ON, Sánchez-González DJ, Martínez-Martínez CM, Floriano-Sánchez E, Santamaría A et al (2007) Evaluation of oxidative stress in D-serine induced nephrotoxicity. Toxicology 229(1–2):123–35

    Article  CAS  Google Scholar 

  43. Marí M, Bai J, Cederbaum AI (2002) Toxicity by pyruvate in HepG2 cells depleted of glutathione: role of mitochondria. Free Radic Biol Med 32(1):73–83

    Article  Google Scholar 

  44. Pereira da silva AP, El-Bacha T, Kyaw N, dos Santos RS, da Silva WS, Almeida FC et al (2009) Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J 417(3):717–726

    Article  CAS  Google Scholar 

  45. Stanbrook HS, McMurtry IF (1983) Inhibition of glycolysis potentiates hypoxic vasoconstriction in rat lungs. J Appl Physiol 55(5):1467–1473

    CAS  Google Scholar 

  46. Pedersen PL (2007) The cancer cell’s “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12

    Article  CAS  Google Scholar 

  47. Nemeria N, Volkov A, Brown A, Yi J, Zipper L, Guest JR et al (1998) Systematic study of the six cysteines of the E1 subunit of the pyruvate dehydrogenase multienzyme complex from Escherichia coli: none is essential for activity. Biochemistry 37(3):911–922

    Article  CAS  Google Scholar 

  48. Korotchkina LG, Showkat, Ali M, Patel MS (1999) Involvement of alpha-cysteine-62 and beta-tryptophan-135 in human pyruvate dehydrogenase catalysis. Arch Biochem Biophys 369(2):277–287

    Article  CAS  Google Scholar 

  49. Rícný J, Tucek S (1981) Acetyl coenzyme A and acetylcholine in slices of rat caudate nuclei incubated in the presence of metabolic inhibitors. J Biol Chem 256(10):4919–4923

    Google Scholar 

  50. Mulet C, Lederer F (1977) Bromopyruvate as an affinity label for baker’s yeast flavocytochrome b2. Kinetic study of the inactivation reaction. Eur J Biochem 73(2):443–447

    Article  CAS  Google Scholar 

  51. Thangaraju M, Karunakaran SK, Itagaki S, Gopal E, Elangovan S, Prasad PD et al (2009) Transport by SLC5A8 with subsequent inhibition of histone deacetylase 1 (HDAC1) and HDAC3 underlies the antitumor activity of 3-bromopyruvate. Cancer 115(20):4655–4666

    Article  CAS  Google Scholar 

  52. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(2):281–299

    Article  CAS  Google Scholar 

  53. De Bruijne AW, Vreeburg H, Van Steveninck J (1983) Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta 732(3):562–568

    Article  Google Scholar 

  54. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76(5):865–873

    Article  CAS  Google Scholar 

  55. McCullagh KJ, Poole RC, Halestrap AP, O’Brien M, Bonen A (1996) Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol 271(1):143–150

    Google Scholar 

  56. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Investig 118(12):3835–3837

    CAS  Google Scholar 

  57. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ et al (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632

    CAS  Google Scholar 

  58. Mathupala SP, Colen CB, Parajuli P, Sloan AE (2007) Lactate and malignant tumors: a therapeutic target at the end stage of glycolysis. J Bioenerg Biomembr 39(1):73–77

    Article  CAS  Google Scholar 

  59. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Molecular Medicine Today 6(1):15–19

    Article  CAS  Google Scholar 

  60. Suh SY, Ahn HY (2007) Lactate dehydrogenase as a prognostic factor for survival time of terminally ill cancer patients: a preliminary study. Eur J Cancer 43(6):1051–1059

    Article  CAS  Google Scholar 

  61. Dell’Antone P (2009) Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Medicinal Chemistry 5(6):491–496

    Article  Google Scholar 

  62. Lang VJ, Leystra-Lantz C, Cook RA (1987) Characterization of the specific pyruvate transport system in Escherichia coli K-12. J Bacteriol 169(1):380–385

    CAS  Google Scholar 

  63. Babu E, Ramachandran S, CoothanKandaswamy V, Elangovan S, Prasad PD, Ganapathy V et al (2011) Role of SLC5A8, a plasma membrane transporter and a tumor suppressor in the antitumor activity of dichloroacetate. Oncogene 30(38):4026–4037

    Article  CAS  Google Scholar 

  64. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(1):11–22

    Article  Google Scholar 

  65. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochemical and Biophysical Research Communications 324(1):269–275

    Article  CAS  Google Scholar 

  66. Kobryn CE, Fiskum G (1992) Differential sensitivity of AS-30D rat hepatoma cells and normal hepatocytes to anoxic cell damage. Am J Physiol 262(6):1384–1387

    Google Scholar 

  67. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463

    CAS  Google Scholar 

  68. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, et al. (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Research, 15, 60(4): 916–921

    Google Scholar 

  69. Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJ et al (2009) Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113(9):2014–2021

    Article  CAS  Google Scholar 

  70. Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Molecular Oncology 2(1):94–101

    Article  Google Scholar 

  71. Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia 14(1):3–9

    Article  Google Scholar 

  72. Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, et al. (2011) Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Research

  73. Akers LJ, Fang W, Levy AG, Franklin AR, Huang P, Zweidler-McKay PA (2011) Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin. Leuk Res 35(6):814–820

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Fukui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El Sayed, S.M., El-Magd, R.M.A., Shishido, Y. et al. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr 44, 61–79 (2012). https://doi.org/10.1007/s10863-012-9409-4

Download citation

Keywords

  • D-amino acid oxidase
  • 3-bromopyruvate
  • Pyruvate
  • Lactate
  • Citrate
  • Glycolysis double inhibition