Skip to main content
Log in

Photosynthetic water oxidation vs. mitochondrial oxygen reduction: distinct mechanistic parallels

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The photosynthetic oxygen evolving complex (PSII-OEC) and the mitochondrial cytochrome c oxidase (CcO) not only catalyze anti-parallel reactions (the OEC oxidizes water to dioxygen, whereas CcO reduces dioxygen to water), they also share a number of uncanny molecular and mechanistic similarities. Both feature a redox-active polymetallic cluster that includes a key tyrosine, and both utilize a two-phase mechanism. In one phase the polymetallic cluster undergoes four sequential one-electron transfers: In the PSII-OEC, four successive photooxidations of the photosystem II reaction center P680 (to P680+) allows acceptance of 4 × 1e- from the Mn4Ca cluster; in CcO, four reduced cytochrome c Fe2+ cations donate 4 × 1e- to the bimetallic center. In the second phase for each enzyme, the polymetallic cluster undergoes a single four-electron transfer with the O2/2 H2O redox couple. Intriguing mechanistic similarities between these two complex redox enzymes first delineated over a decade ago by Hoganson/Proshlyakov/Babcock et al. are updated and expanded in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affourtit C, Albury MS, Crichton PG, Moore AL (2002) Exploring the mole-cular nature of alternative oxidase regulation and catalysis. FEBS Lett 510:121–126

    Article  CAS  Google Scholar 

  • Ahlbrink R, Haumann M, Cherepanov D, Bögershausen O, Mulkidjanian A, Junge W (1998) Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor. Biochem 37(4):1131–1142

    Article  CAS  Google Scholar 

  • Babcock GT (1999) How oxygen is activated and reduced in respiration. Proc Natl Acad Sci U S A 96(23):13114–13117

    Article  Google Scholar 

  • Babcock GT, Wikstrom M (1992) O2 activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  CAS  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  CAS  Google Scholar 

  • Babcock GT, Barry BA, Debus RJ, Hoganson CW, Atamian M, McIntosh L, Sithole I, Yocum CF (1989) Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. Biochem 28:9557–9565

    Article  CAS  Google Scholar 

  • Belevich I, Verkhovsky MI, Wikstrom M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440:829–832

    Article  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry, 6th edn., W. H. Freeman, NY; pp. 514–517 and 549–551

  • Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430:480–483

    Article  CAS  Google Scholar 

  • Cook CD, Depatie CB (1959) Oxidation of hindered phenols. VIII. Kinetics of the oxidation of 2,4,6-tri-t-butylphenol by benzoyl peroxide. J Org Chem 24:1144–1146

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2006) Photosynthetic oxygen production: response. Science 312:1471–1472

    CAS  Google Scholar 

  • Dau H, Haumann M (2008) The manganese complex of photosytem II in its reaction cycle—basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295

    Article  CAS  Google Scholar 

  • De AK, Dutta BK, Bhattacharjee S (2006) Reaction kinetics for the degradation of phenol and chlorinated phenols using Fenton’s reagent. Env Program 25:64–71

    Article  CAS  Google Scholar 

  • Haumann M, Liebisch P, Muller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved x-ray experiments. Science 310:1019–1021

    Article  CAS  Google Scholar 

  • Haumann M, Grundmeier A, Zaharieva I, Dau H (2008) Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci U S A 105(45):17384–17389

    Article  CAS  Google Scholar 

  • Hays A-MA, Vassiliev IR, Golbeck JH, Debus RJ (1998) Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study. Biochem 37:11352–11365

    Article  CAS  Google Scholar 

  • Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956

    Article  CAS  Google Scholar 

  • Hoganson CW, Pressler MA, Proshlyakov DA, Babcock GT (1998) From water to oxygen and back again: mechanistic similarities in the enzymatic redox conversions between water and dioxygen. Biochim Biophys Acta 1365:170–174

    Article  CAS  Google Scholar 

  • Howard DL, Tinoco AD, Brudvig GW, Vrettos JS, Allen BC (2005) Catalytic oxygen evolution by a bioinorganic model of the photosystem II oxygen-evolving complex. J Chem Educ 82:791–794

    Article  CAS  Google Scholar 

  • Joliot P, Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bio-energetics of photosynthesis. Academic, London, pp 387–411

    Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic oxygen evolution. I: a linear four-step mechanism. Photochem Photobiol 11:457–475

    Article  CAS  Google Scholar 

  • Mamedov F, Sayre RT, Styring S (1998) Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II. Biochem 37:14245–14256

    Article  CAS  Google Scholar 

  • Marechal M, Kido Y, Kita K, Moore AL, Rich PR (2009) Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 284:31827–31833

    Article  CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2004) Structure-based mechanism of photosynthetic water oxidation. Phys Chem Chem Phys 6:4754–4763

    Article  CAS  Google Scholar 

  • Moore AL, Carre JE, Affourtit C, Albury MS, Crichton PG, Kita K, Heathcote P (2008) Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim Biophys Acta 1777:327–330

    Article  CAS  Google Scholar 

  • Pignatello JJ (1992) Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Tech 26:944–951

    Article  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA, Babcock GT (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci U S A 95:8020–8025

    Article  CAS  Google Scholar 

  • Rappaport F, Lavergne J (1997) Charge recombination and proton transfer in manganese-depleted photosystem II. Biochemistry 36:15294–15302

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    Article  CAS  Google Scholar 

  • Silverstein TP et al (1993) Transmembrane measurements across bioenergetic membranes. Biochim Biophys Acta 1183:1–3

    Article  CAS  Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J Am Chem Soc 130:3428–3442

    Article  CAS  Google Scholar 

  • Svensson-Elk M, Abramson J, Carsson G, Tornoth S, Brzezinski P, Iwata S (2002) The x-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  Google Scholar 

  • Tommos C, Babcock G (1998) Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31:18–25

    Article  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  Google Scholar 

  • Voet D, Voet JG, Pratt CW (2008) Fundamentals of biochemistry, 3rd edn., Wiley, pp. 615–618 and 654–656

  • Wagner AM, Moore AL (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17:319–333

    Article  CAS  Google Scholar 

  • Wikstrom MKF (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273

    Article  CAS  Google Scholar 

  • Wikstrom M, Verkhovsky MI (2006) Towards a mechanism of proton pumping by the haem-copper oxidases. Biochim Biophys Acta 1757:1047–1051

    Article  Google Scholar 

  • Yano J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd P. Silverstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverstein, T.P. Photosynthetic water oxidation vs. mitochondrial oxygen reduction: distinct mechanistic parallels. J Bioenerg Biomembr 43, 437–446 (2011). https://doi.org/10.1007/s10863-011-9370-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9370-7

Keywords

Navigation