Skip to main content

Advertisement

Log in

O2 consumption rates along the growth curve: new insights into Trypanosoma cruzi mitochondrial respiratory chain

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Understanding the energy-transduction pathways employed by Trypanosoma cruzi, the etiological agent of Chagas disease, may lead to the identification of new targets for development of a more effective therapy. Herein, the contribution of different substrates for O2 consumption rates along T. cruzi epimastigotes (Tulahuen 2 and Y strains) growth curve was evaluated. O2 consumption rates were higher at the late stationary phase not due to an increase on succinate-dehydrogenase activity. Antimycin A and cyanide did not totally inhibit the mitochondrial respiratory chain (MRC). Malonate at 10 or 25 mM was not a potent inhibitor of complex II. Comparing complex II and III, the former appears to be the primary site of H2O2 release. An update on T. cruzi MRC is presented that together with our results bring important data towards the understanding of the parasite’s MRC. The findings mainly at the stationary phase could be relevant for epimastigotes transformation into the metacyclic form, and in this sense deserves further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affranchino JL, De Tarlovsky MNS, Stoppani AOM (1985) Mol Biochem Parsitol 16:289–298

    Article  CAS  Google Scholar 

  • Affranchino JL, De Tarlovsky MNS, Stoppani AOM (1986) Comp Biochem Physiol 85:381–388

    CAS  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) J Biol Chem 279:49883–49888

    Article  CAS  Google Scholar 

  • Boveris A, Herting CM, Turrens JF (1986) Mol Biochem Parasitol 19(2):163–169

    Article  CAS  Google Scholar 

  • Bringaud F, Rivière L, Coustou V (2006) Mol Biochem Parasitol 149:1–9

    Article  CAS  Google Scholar 

  • Brisse S, Barnabé C, Bañulus AL, Sidibé I, Noël S, Tibayrenc M (1998) Mol Biochem Parasitol 92:253–263

    Article  CAS  Google Scholar 

  • Campos C, Degasperi GR, Pacífico D, Alberici L, Carreira L, Guimarães R, Castilho RF, Vercesi AE (2004) Biochem Pharmacol 68:2197–2206

    Article  CAS  Google Scholar 

  • Carranza JC, Kowaltowski AJ, Mendonça MAG, Oliveira TC, Gadelha FR, Zingales B (2009) J Bioenerg Biomembr 41:299–308

    Article  Google Scholar 

  • Castellani O, Ribeiro LV, Fernandes F (1967) J Protozool 14:447–451

    CAS  Google Scholar 

  • Cazzulo JJ (1992) FASEB J 6:3153–3161

    CAS  Google Scholar 

  • Cazzulo JJ, de Cazzulo BM Franke, Engel JC, Cannata JJ (1985) Mol Biochem Parasitol 16(3):329–343

    Article  CAS  Google Scholar 

  • Chaudhuri M, Ott RD, Hill GC (2006) Trends Parasitol 22:484–491

    Article  CAS  Google Scholar 

  • Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, Nolan D, Barret MP, Franconi JM, Bringaud F (2008) J Biol Chem 283(24):16342–16354

    Article  CAS  Google Scholar 

  • Cunha-e-Silva NL, Atella GC, Porto-Carreiro IA, Morgado-Diaz JA, Pereira MG, Engel JC, Doyle PS, Dvorak JA (1990) Mol Biochem Parasitol 39(1):69–76

    Article  Google Scholar 

  • Datta G, Bera T (2000) Ind J Med Res 112:15–20

    CAS  Google Scholar 

  • Denicola-Seoane A, Rubbo H, Prodanov E, Turrens JF (1992) Mol Biochem Parasitol 54:43–50

    Article  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) Science 309:409–415

    Article  CAS  Google Scholar 

  • Engel JC, Doyle PS, Dvorak JA (1990) Mol Biochem Parasitol 39:69–76

    Article  CAS  Google Scholar 

  • Fang J, Beattie DS (2002) Biochem 41:3065–3072

    Article  CAS  Google Scholar 

  • Felix CR, Caldas RA, Ceron CR, Roitman L (1978) Ann Trop Med Parasitol 72:89–91

    CAS  Google Scholar 

  • Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, Kawamukai M, Búa J, Nilsson D, Pravia C, Katzin A, Cassera MB, Aslund L, Andersson B, Docampo R, Bontempi EJ (2006) J Biol Chem 281:39339–39348

    Article  CAS  Google Scholar 

  • Finzi JK, Chiavegatto CWM, Corat KF, Lopez JA, Cabrera OG, Mielniczki-Pereira AA, Colli W, Alves MJM, Gadelha FR (2004) Mol Biochem Parasitol 133:37–43

    Article  CAS  Google Scholar 

  • Holbrook N, Ikeyama S (2002) Biochem Phamacol 64:999–1005

    Article  CAS  Google Scholar 

  • Irigoín F, Inada NM, Fernandes MP, Piacenza L, Gadelha FR, Vercesi A, Radí R (2008) Biochem J 418:418–595

    Google Scholar 

  • Kowaltowski AJ, Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Free Rad Biol Med 47:333–343

    Article  CAS  Google Scholar 

  • Lash LH, Tokarz JJ, Chen Z, Pedrosi BM, Woods EB (1996) J Pharmacol Exp Ther 276:194–205

    CAS  Google Scholar 

  • Mancilla R, Naquira C (1964) J Eukaryot Microbiol 11:509–513

    Article  CAS  Google Scholar 

  • Mehta A, Shaha C (2004) J Biol Chem 279:11798–11813

    Article  CAS  Google Scholar 

  • Mielniczki-Pereira AA, Chiavegatto CM, López JA, Colli W, Alves MJM, Gadelha FR (2007) Acta Trop 101:54–60

    Article  CAS  Google Scholar 

  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) J Inherit Metab Dis 31:44–54

    Article  CAS  Google Scholar 

  • Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K (2009) J Biol Chem 284:7255–7263

    Article  CAS  Google Scholar 

  • Morales-Neto R, Hulshof L, Ferreira CV, Gadelha FR (2009) J Parasitol 95:1525–1531

    Article  CAS  Google Scholar 

  • Murta SM, Romanha AJ (1998) Parasitology 116(2):165–171

    Article  CAS  Google Scholar 

  • Murta SMF, Gazzinelli RT, Brener Z, Romanha AJ (1998) Mol Biochem Parasitol 93:203–214

    Article  CAS  Google Scholar 

  • Nóbrega AA, Garcia MH, Tatto E, Obara MT, Costa E, Sobel J, Araujo WN (2009) Emerg Infect Dis 15(4):653–655

    Article  Google Scholar 

  • Opperdoes FR (1985) Br Med Bull 41(2):130–136

    CAS  Google Scholar 

  • Opperdoes FR, Coombs GH (2007) Trends Parasitol 23(4):149–158

    Article  CAS  Google Scholar 

  • Opperdoes FR, Michels PAM (2008) Trends Parasitol 24:310–317

    Article  CAS  Google Scholar 

  • Pérez de Ayala A, Pérez-Molina JA, Norman F, López-Vélez R (2009) Emerg Infect Dis 15:607–608

    Article  Google Scholar 

  • Piacenza L, Irigoín F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, Wilkinson SR, Radí R (2007) Biochem J 403:323–334

    Article  CAS  Google Scholar 

  • Rogerson GW, Gutteridge WE (1979) Int J Biochem 10:1019–1023

    Article  CAS  Google Scholar 

  • Santhamma KR, Bhaduri A (1995) Mol Biochem Parasitol 75:43–53

    Article  CAS  Google Scholar 

  • Singer TP (1974) Methods Biochem Anal 22:123–175

    Article  CAS  Google Scholar 

  • Stoppani AO, Docamop R, Deboiso JF, Frasch ACC (1980) Mol Biochem Parasitol 2:3–21

    Article  CAS  Google Scholar 

  • Tielens AG, Van Hellemond JJ (1998) Parasitol Today 14(7):265–272

    Article  CAS  Google Scholar 

  • Tielens AGM, Van Hellemond JJ (2009) Trends Parasitol 25:482–490

    Article  Google Scholar 

  • Vercesi AE, Bernardes CF, Hoffman ME, Gadelha FR, Docampo R (1991) J Biol Chem 266:14431–14434

    CAS  Google Scholar 

  • Wilkinson SR, Kelly JM (2009) Expert Rev Mol Med 29:11–31

    Google Scholar 

  • Zingales B, Pereira ES, Oliveira RP, Almeida KA, Umezawa ES, Souto RP, Vargas N, Cano MI, Franco Da Silveira J, Nehme NS, Morel CM, Brener Z, Macedo A (1997) Acta Trop 68:159–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda R. Gadelha.

Additional information

Thiago M. Silva and Eduardo F. Peloso contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, T.M., Peloso, E.F., Vitor, S.C. et al. O2 consumption rates along the growth curve: new insights into Trypanosoma cruzi mitochondrial respiratory chain. J Bioenerg Biomembr 43, 409–417 (2011). https://doi.org/10.1007/s10863-011-9369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9369-0

Keywords

Navigation