Skip to main content

Levels of membrane fluidity in the spinal cord and the brain in an animal model of amyotrophic lateral sclerosis

Abstract

A mutant form of the copper/zinc superoxide dismutase (SOD1) protein is found in some patients with amyotrophic lateral sclerosis (ALS). Alteration of the activity of this antioxidant enzyme leads to an oxidative stress imbalance, which damages the structure of lipids and proteins in the CNS. Using fluorescence spectroscopy, we monitored membrane fluidity in the spinal cord and the brain in a widely used animal model of ALS, the SODG93A mouse, which develops symptoms similar to ALS with an accelerated course. Our results show that the membrane fluidity of the spinal cord in this animal model significantly decreased in symptomatic animals compared with age-matched littermate controls. To the best of our knowledge, this is the first report showing that membrane fluidity is affected in the spinal cord of a SODG93A animal model of ALS. Changes in membrane fluidity likely contribute substantially to alterations in cell membrane functions in the nervous tissue from SODG93A mice.

This is a preview of subscription content, access via your institution.

References

  1. Agar J, Durham H (2003) Amyotroph Lateral Scler Other Mot Neuron Disord 4:232–242

    Article  CAS  Google Scholar 

  2. Aguirre N, Beal MF, Matson WR, Bogdanov MB (2005) Free Radic Res 39:383–388

    Article  CAS  Google Scholar 

  3. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) J Neurochem 71:2041–2048

    Article  CAS  Google Scholar 

  4. Baenziger JE, Morris ML, Darsaut TE, Ryan SE (2000) J Biol Chem 275:777–784

    Article  CAS  Google Scholar 

  5. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  6. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997) Neuron 18:327–338

    Article  CAS  Google Scholar 

  7. Chen JJ, Yu BP (1994) Free Radic Biol Med 17:411–418

    Article  CAS  Google Scholar 

  8. Chiu AY, Zhai P, Dal Canto MC, Peters TM, Kwon YW, Prattis SM, Gurney ME (1995) Mol Cell Neurosci 6:349–362

    Article  CAS  Google Scholar 

  9. Choe M, Jackson C, Yu BP (1995) Free Radic Biol Med 18:977–984

    Article  CAS  Google Scholar 

  10. Clement AB, Gimpl G, Behl C (2010) Free Radic Biol Med 48:1236–1241

    Article  CAS  Google Scholar 

  11. Cleveland DW (1999) Neuron 24:515–520

    Article  CAS  Google Scholar 

  12. Curtis MT, Gilfor D, Farber JL (1984) Arch Biochem Biophys 235:644–649

    Article  CAS  Google Scholar 

  13. Dal Canto MC, Gurney ME (1995) Brain Res 676:25–40

    Article  CAS  Google Scholar 

  14. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, Siddique T (1993) Science 261:1047–1051

    Article  CAS  Google Scholar 

  15. Emmerson PJ, Clark MJ, Medzihradsky F, Remmers AE (1999) J Neurochem 73:289–300

    Article  CAS  Google Scholar 

  16. Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Kapfer T, Tumani H, Ludolph AC, Brettschneider J (2010) J Neurol Sci 294:51–56

    Article  CAS  Google Scholar 

  17. Farooqui AA, Horrocks LA (1991) Brain Res Brain Res Rev 16:171–191

    Article  CAS  Google Scholar 

  18. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH Jr, Beal MF (1997) J Neurochem 69:2064–2074

    Article  CAS  Google Scholar 

  19. Garcia JJ, Pinol-Ripoll G, Martinez-Ballarin E, Fuentes-Broto L, Miana-Mena FJ, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuna-Castroviejo D (2010) Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.12.013

    Google Scholar 

  20. Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Munoz-Hoyos A (1997) FEBS Lett 408:297–300

    Article  CAS  Google Scholar 

  21. Garcia JJ, Reiter RJ, Karbownik M, Calvo JR, Ortiz GG, Tan DX, Martinez-Ballarin E, Acuna-Castroviejo D (2001) Eur J Pharmacol 428:169–175

    Article  CAS  Google Scholar 

  22. Grimm MO, Tschape JA, Grimm HS, Zinser EG, Hartmann T (2006) Acta Neurol Scand Suppl 185:27–32

    Article  CAS  Google Scholar 

  23. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Science 264:1772–1775

    Article  CAS  Google Scholar 

  24. Hall ED, Andrus PK, Oostveen JA, Fleck TJ, Gurney ME (1998) J Neurosci Res 53:66–77

    Article  CAS  Google Scholar 

  25. Hall ED, Oostveen JA, Andrus PK, Anderson DK, Thomas CE (1997) J Neurosci Methods 76:115–122

    Article  CAS  Google Scholar 

  26. Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine. Oxford Press, New York

    Google Scholar 

  27. Heron DS, Shinitzky M, Hershkowitz M, Samuel D (1980) Proc Natl Acad Sci USA 77:7463–7467

    Article  CAS  Google Scholar 

  28. Hitzemann RJ, Hirschowitz J, Garver DL (1986) J Affect Disord 10:227–232

    Article  CAS  Google Scholar 

  29. Holloway CT, Garfield SA (1981) Lipids 16:525–532

    Article  CAS  Google Scholar 

  30. Lee J, Yu BP, Herlihy JT (1999) Free Radic Biol Med 26:260–265

    Article  CAS  Google Scholar 

  31. Levi M, Baird BM, Wilson PV (1990) J Clin Invest 85:231–237

    Article  CAS  Google Scholar 

  32. Millan-Plano S, Garcia JJ, Martinez-Ballarin E, Reiter RJ, Ortega-Gutierrez S, Lazaro RM, Escanero JF (2003) J Trace Elem Med Biol 17:39–44

    Article  CAS  Google Scholar 

  33. Nelson L, Delgado-Escueta AV (1986) Brain Res 386:32–40

    Article  CAS  Google Scholar 

  34. Niebroj-Dobosz I, Rafalowska J, Fidzianska A, Gadamski R, Grieb P (2007) Folia Neuropathol 45:236–241

    CAS  Google Scholar 

  35. Oghalai JS, Zhao HB, Kutz JW, Brownell WE (2000) Science 287:658–661

    Article  CAS  Google Scholar 

  36. Orrell RW (2007) N Engl J Med 357:822–823

    Article  CAS  Google Scholar 

  37. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, Allen M (1991) Arch Gen Psychiatry 48:563–568

    CAS  Google Scholar 

  38. Prendergast FG, Haugland RP, Callahan PJ (1981) Biochemistry 20:7333–7338

    Article  CAS  Google Scholar 

  39. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Nat Genet 13:43–47

    Article  CAS  Google Scholar 

  40. Reddy RD, Yao JK (1996) Prostaglandins Leukot Essent Fatty Acids 55:33–43

    Article  CAS  Google Scholar 

  41. Reiter RJ (1998) Prog Neurobiol 56:359–384

    Article  CAS  Google Scholar 

  42. Reiter RJ, Tan D, Kim SJ, Manchester LC, Qi W, Garcia JJ, Cabrera JC, El-Sokkary G, Rouvier-Garay V (1999) Mech Ageing Dev 110:157–173

    Article  CAS  Google Scholar 

  43. Reyes-Gonzales MC, Fuentes-Broto L, Martinez-Ballarin E, Miana-Mena FJ, Berzosa C, Garcia-Gil FA, Aranda M, Garcia JJ (2009) J Membr Biol 231:93–99

    Article  CAS  Google Scholar 

  44. Rice-Evans C, Burdon R (1993) Prog Lipid Res 32:71–110

    Article  CAS  Google Scholar 

  45. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Nature 362:59–62

    Article  CAS  Google Scholar 

  46. Shaw IC, Fitzmaurice PS, Mitchell JD, Lynch PG (1995) Neurodegeneration 4:391–396

    Article  CAS  Google Scholar 

  47. Sunshine C, McNamee MG (1994) Biochim Biophys Acta 1191:59–64

    Article  CAS  Google Scholar 

  48. van Zundert B, Peuscher MH, Hynynen M, Chen A, Neve RL, Brown RH Jr, Constantine-Paton M, Bellingham MC (2008) J Neurosci 28:10864–10874

    Article  Google Scholar 

  49. Viani P, Cervato G, Fiorilli A, Cestaro B (1991) J Neurochem 56:253–258

    Article  CAS  Google Scholar 

  50. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) Neuron 14:1105–1116

    Article  CAS  Google Scholar 

  51. Yu BP, Suescun EA, Yang SY (1992) Mech Ageing Dev 65:17–33

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joaquín J. García.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miana-Mena, F.J., Piedrafita, E., González-Mingot, C. et al. Levels of membrane fluidity in the spinal cord and the brain in an animal model of amyotrophic lateral sclerosis. J Bioenerg Biomembr 43, 181 (2011). https://doi.org/10.1007/s10863-011-9348-5

Download citation

Keywords

  • Amyotrophic lateral sclerosis
  • Membrane fluidity
  • G93A
  • Oxidative stress
  • Spinal cord
  • Brain
  • SOD