Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 43, Issue 1, pp 71–79 | Cite as

Arabidopsis thaliana Uncoupling Proteins (AtUCPs): insights into gene expression during development and stress response and epigenetic regulation

  • Fábio Tebaldi Silveira Nogueira
  • Flávio Tetsuo Sassaki
  • Ivan G. Maia
Article

Abstract

Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.

Keywords

Uncoupling proteins Gene expression Stress Development Arabidopsis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong AF, Badger MR, Day DA, Barthet MM, Smith PM, Millar AH, Whelan J, Atkin OK (2008) Plant Cell Environ 31:1156–1169CrossRefGoogle Scholar
  2. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Nat Genet 26:435–439CrossRefGoogle Scholar
  3. Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) Proc Natl Acad Sci USA 99:16499–16506CrossRefGoogle Scholar
  4. Aufsatz W, Mette MF, Matzke AJ, Matzke M (2004) Plant Mol Biol 54:793–804CrossRefGoogle Scholar
  5. Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010) Biochim Biophys Acta 1797:785–791CrossRefGoogle Scholar
  6. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New YorkGoogle Scholar
  7. Borecký J, Nogueira FT, de Oliveira KA, Maia IG, Vercesi AE, Arruda P (2006) J Exp Bot 57:849–864CrossRefGoogle Scholar
  8. Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Plant Biol 6:375–386CrossRefGoogle Scholar
  9. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Plant Cell 13:1499–1510CrossRefGoogle Scholar
  10. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Free Radic Biol Med 37:755–767CrossRefGoogle Scholar
  11. Brandalise M, Maia IG, Borecký J, Vercesi AE, Arruda P (2003) J Bioenerg Biomembr 35:203–209CrossRefGoogle Scholar
  12. Chan SW, Henderson IR, Jacobsen SE (2005) Nat Rev Genet 6:351–360CrossRefGoogle Scholar
  13. Chang S, Pikaard CS (2005) J Biol Chem 280:796–804Google Scholar
  14. Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Plant Mol Biol 58:193–212CrossRefGoogle Scholar
  15. Clifton R, Millar AH, Whelan J (2006) Biochim Biophys Acta 1757:730–741CrossRefGoogle Scholar
  16. Considine MJ, Daley DO, Whelan J (2001) Plant Physiol 126:1619–1629Google Scholar
  17. Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J, Brand MD, Sweetlove LJ (2003) J Biol Chem 278:22298–22302CrossRefGoogle Scholar
  18. Costa ADT, Nantes IL, Jezek P, Leite A, Arruda P, Vercesi AE (1999) J Bioenerg Biomembranes 31:527–533CrossRefGoogle Scholar
  19. Daley DO, Considine MJ, Howell KA, Millar AH, Day DA, Whelan J (2003) Plant Mol Biol 51:745–755CrossRefGoogle Scholar
  20. Dunn MA, White AJ, Vural S, Hughes MA (1998) Plant Mol Biol 38:551–564CrossRefGoogle Scholar
  21. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Nat Biotechnol 26:941–946CrossRefGoogle Scholar
  22. Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) Plant Physiol 147:595–610CrossRefGoogle Scholar
  23. Goll MG, Bestor TH (2005) Annu Rev Biochem 74:481–514CrossRefGoogle Scholar
  24. Ho LH, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van Aken O, Whelan J (2008) Plant Physiol 147:1858–1873CrossRefGoogle Scholar
  25. Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Trends Plant Sci 13:7–13CrossRefGoogle Scholar
  26. Howell KA, Millar AH, Whelan J (2006) Plant Mol Biol 60:201–223CrossRefGoogle Scholar
  27. Klose RJ, Bird AP (2006) Trends Biochem Sci 31:89–97CrossRefGoogle Scholar
  28. Kowaltowski AJ, Costa AD, Vercesi AE (1998) FEBS Lett 425:213–216CrossRefGoogle Scholar
  29. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Proc Natl Acad Sci USA 107(18):8063–8070CrossRefGoogle Scholar
  30. Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Laxa M (2009) Mol Plant 2:390–406CrossRefGoogle Scholar
  31. Maia IG, Benedetti CE, Leite A, Turcinelli SR, Vercesi AE, Arruda P (1998) FEBS Lett 429:403–406CrossRefGoogle Scholar
  32. Maxwell DP, Wang Y, McIntosh L (1999) Proc Natl Acad Sci USA 96:8271–8276CrossRefGoogle Scholar
  33. McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MN (2005) J Biol Chem 280:33470–33476CrossRefGoogle Scholar
  34. Moller IM (2001) Annu Rev Plant Physiol Plant Mol Biol 52:561–591CrossRefGoogle Scholar
  35. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Plant J 41:697–709CrossRefGoogle Scholar
  36. Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) Plant J 50:452–465Google Scholar
  37. Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) J Exp Bot 58:195–210CrossRefGoogle Scholar
  38. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Plant Cell 18:1887–1899CrossRefGoogle Scholar
  39. Saisho D, Nambara E, Naito S, Tsutsumi N, Hirai A, Nakazono M (1997) Plant Mol Biol 35:585–596CrossRefGoogle Scholar
  40. Schimd M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) Nat Genet 37:501–506CrossRefGoogle Scholar
  41. Smith AM, Ratcliffe RG, Sweetlove LJ (2004) J Biol Chem 279:51944–51952CrossRefGoogle Scholar
  42. Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR (2006) Proc Natl Acad Sci USA 103:19587–19592CrossRefGoogle Scholar
  43. Taylor NL, Howell KA, Heazlewood JL, Tan TY, Narsai R, Huang S, Whelan J, Millar AH (2010) Plant Physiol 154:691–704Google Scholar
  44. Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J (2009) Mol Plant 2:1310–1324CrossRefGoogle Scholar
  45. Vercesi AE, Borecký J, Maia Ide G, Arruda P, Cuccovia IM, Chaimovich H (2006) Annu Rev Plant Biol 57:383–404CrossRefGoogle Scholar
  46. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB (2000) J Biol Chem 275:16258–16266CrossRefGoogle Scholar
  47. Walling L, Drews GN, Goldberg RB (1986) Proc Natl Acad Sci USA 83:2123–2127CrossRefGoogle Scholar
  48. Watanabe A, Nakazono M, Tsutsumi N, Hirai A (1999) Plant Cell Physiol 40:1160–1166Google Scholar
  49. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) PLoS ONE 2:e718CrossRefGoogle Scholar
  50. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Science 328:916–919CrossRefGoogle Scholar
  51. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Nat Genet 39:61–69CrossRefGoogle Scholar
  52. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Plant Physiol 136:2621–2632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fábio Tebaldi Silveira Nogueira
    • 1
  • Flávio Tetsuo Sassaki
    • 1
  • Ivan G. Maia
    • 1
  1. 1.Departamento de Genética, Instituto de BiociênciasUNESPBotucatuBrazil

Personalised recommendations