Skip to main content

Advertisement

Log in

Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In the present study, to determine whether aging could increase the vulnerability of the brain to estrogen withdrawal-induced mitochondrial dysfunction, we measured the cytochrome c oxidase (COX) activity and mitochondrial adenosine triphosphate (ATP) content in hippocampi of 2 groups of ovariectomized (OVX) Wistar rats aged 2 months (young) and 9 months (middle-aged), respectively. In addition, effects of genistein and estradiol benzoate (EB) were tested also. We observed only a transient alteration of COX activity and mitochondrial ATP content in hippocampi of young OVX rats but a prolonged lowering of COX activity and mitochondrial ATP content in hippocampi of middle-aged OVX rats. This suggested that with aging compensatory mechanisms of mitochondrial function were attenuated, thus exacerbated estrogen withdrawal-induced mitochondrial dysfunction in hippocampi. Significantly, EB/genistein treatment reversed this estrogen withdrawal-induced mitochondrial dysfunction in both young and middle-aged rats suggesting that genistein may be used as a substitute for estradiol to prevent age-related disease such as Alzheimer’s disease in post-menopausal females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelenda M, Puerta M (1999) Eur J Endocrinol 141:630–636

    Article  CAS  Google Scholar 

  • Arendt J, Laud CA, Symons AM, Pryde SJ (1983) J Reprod Fertil 68(1):213–218

    Article  CAS  Google Scholar 

  • Assimacopoulos-Jeannet F, McCormack JG, Jeanrenaud B (1986) J Biol Chem 261:8799–8804

    CAS  Google Scholar 

  • Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butterfield DA, Estus S, Markesbery WR (1999) Neurochem Res 24:767–774

    Article  CAS  Google Scholar 

  • Beauvoit B, Rigoulet M (2001) IUBMB Life 52:143–152

    Article  CAS  Google Scholar 

  • Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J (2003) Free Radic Biol Med 34:546–552

    Article  CAS  Google Scholar 

  • Borras C, Gambini J, Vina J (2007) Front Biosci 12:1008–1013

    Article  CAS  Google Scholar 

  • Brand MD, D’Alessandri L, Reis HM, Hafner RP (1990) Arch Biochem Biophys 283:278–284

    Article  CAS  Google Scholar 

  • Drew B, Leeuwenburgh C (2003) Am J Physiol Regul Integr Comp Physiol 285:R1259–R1267

    CAS  Google Scholar 

  • Garcia de La Asunción J, Millan A, Pla R, Bruseghini L, Esteras A, Pallardó FV, Sastre J, Viña J (1996) FASEB J 10:333–338

    Google Scholar 

  • Heinrich R, Rapoport TA (1974) Eur J Biochem 42:89–95

    Article  CAS  Google Scholar 

  • Ho KP, Li L, Zhao L, Qian ZM (2003) Mol Cell Biochem 247:219–222

    Article  CAS  Google Scholar 

  • Korzeniewski B (2001) Biochim Biophys Acta 1504:31–45

    Article  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) In rate control of biological processes: The control of flux. Cambridge University Press, Cambridge, pp 65–104

    Google Scholar 

  • Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Free Radical Biol Med 29:211–221

    Article  CAS  Google Scholar 

  • Liu Z, Stafstrom CE, Sarkisian M, Tandon P, Yang Y, Hori A, Holmes GL (1996) Brain Res Dev Brain Res 97:178–184

    Article  CAS  Google Scholar 

  • Lecanu L, Yao W, Piechot A, Greeson J, Tzalis D, Papadopoulos V (2005) Neuropharmacology 49:86–96

    Article  CAS  Google Scholar 

  • Marks JD, Bindokas VP, Zhang XM (2000) Brain Res Dev Brain Res 124:101–116

    Article  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE, Jr (1980) Exp Gerontol 15:575–591

    Article  CAS  Google Scholar 

  • Miquel J, Ramirez-Bosca A, Ramirez-Bosca JV, Alperi JD (2006) Arch Gerontol Geriatr 42:289–306

    Article  CAS  Google Scholar 

  • Nilsen J, Brinton RD (2004) Curr Drug Targets CNS Neurol Disord 3:297–313

    Article  CAS  Google Scholar 

  • Reder C (1988) J Theor Biol 135:175–201

    Article  CAS  Google Scholar 

  • Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T (2003) Biochem J 370:751–762

    Article  CAS  Google Scholar 

  • Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O’Connor E, Estrela JM, Miquel J, Viña J (1996) Hepatology 24:1199–1205

    Article  CAS  Google Scholar 

  • Shi C, Xu XW, Forster EL, Tang LF, Ge Z, Yew DT (2008) Cell Biochem Funct 26:172–178

    Article  CAS  Google Scholar 

  • Toescu EC (2005) Philos Trans R Soc Lond B Biol Sci 360:2347–2354

    Article  CAS  Google Scholar 

  • Taivassalo T, Abbott A, Wyrick P, Haller RG (2002) Ann Neurol 51:38–44

    Article  Google Scholar 

  • Viña J, Borrás C, Gambini J, Sastre J, Pallardó FV (2005) Sci Aging Knowledge Environ 23:pe17

    Article  Google Scholar 

  • Ventura B, Genova M, Bovina C, Formiggini G, Lenaz G (2002) Biochim Biophys Acta 1553:249–260

    Article  CAS  Google Scholar 

  • Xu J, Zhu J, Shi C, Guo K, Yew DT (2007) J Mol Neurosci 31:101–112

    Article  CAS  Google Scholar 

  • Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, Guo Q, Shen CJ, Xu J (2008) Cell Mol Neurobiol [Epub ahead of print]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Xu, J. Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. J Bioenerg Biomembr 40, 625–630 (2008). https://doi.org/10.1007/s10863-008-9195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9195-1

Keywords

Navigation