Skip to main content
Log in

Catalysis by isolated β-subunits of the ATP Synthase/ATPase from Thermophilic bacillus PS3. Hydrolysis of Pyrophosphate

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Although the capacity of isolated β-subunits of the ATP synthase/ATPase to perform catalysis has been extensively studied, the results have not conclusively shown that the subunits are catalytically active. Since soluble F1 of mitochondrial H+-ATPase can bind inorganic pyrophosphate (PPi) and synthesize PPi from medium phosphate, we examined if purified His-tagged β-subunits from Thermophilic bacillus PS3 can hydrolyze PPi. The difference spectra in the near UV CD of β-subunits with and without PPi show that PPi binds to the subunits. Other studies show that β-subunits hydrolyze [32P] PPi through a Mg2+-dependent process with an optimal pH of 8.3. Free Mg2+ is required for maximal hydrolytic rates. The Km for PPi is 75 μM and the Vmax is 800 pmol/min/mg. ATP is a weak inhibitor of the reaction, it diminishes the Vmax and increases the Km for PPi. Thus, isolated β-subunits are catalytically competent with PPi as substrate; apparently, the assembly of β-subunits into the ATPase complex changes substrate specificity, and leads to an increase in catalytic rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Nature 370:621–628

    Article  CAS  Google Scholar 

  • Avital S, Gromet-Elhanan Z (1991) J Biol Chem 266:7067–7062

    CAS  Google Scholar 

  • Baltscheffsky H (1993) In Chemical Evolution .Origin of life (Ponnamperuna , C.,Chela- Flores., J. eds) A. Deepak, Hampton pp 13–23

  • Baltscheffsky M (1967) Nature 216:241–243

    Article  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) FEBS Lett 454:527–533

    Article  Google Scholar 

  • Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J, Bourquignon J (2002) Proteomics 2:880–898

    Article  CAS  Google Scholar 

  • Baykov AA, Tam-Villoslado JJ, Avaeva SM (1979) Biochem Biophys Acta 569:228–238

    CAS  Google Scholar 

  • Bollag DM, Rozycki MD, Stuart JE (1996) In Protein Methods J Wiley and sons Inc Publication pp 157–159

  • Chandrayan SK, Guptasarma P (2008) Proteins 72:539–546

    Article  CAS  Google Scholar 

  • Frasch WD, Green J, Caguiat J, Mejia A (1989) J Biol Chem 264:5064–5069

    CAS  Google Scholar 

  • Futai M (1977) Biochem Biophys Res Comm 79:1231–1237

    Article  CAS  Google Scholar 

  • Garboczi DN, Shenbagamurthi P, Kirk W, Hulligen J, Pedersen PL (1988) J Biol Chem 263:812–816

    CAS  Google Scholar 

  • Halonen P, Tamguenkoski MN, Rauen L, Huopalati S, Parfenyev AN, Baykov A, Lahti R (2005) Biochemistry 44:4004–4010

    Article  CAS  Google Scholar 

  • Harris DA, Boork J, Baltscheffsky M (1985) Biochemistry 24:3876–3883

    Article  CAS  Google Scholar 

  • Heikinheimo P, Lehtonen J, Baykov A, Lahti R, Cooperman BS, Goldman A (1996) Structure 4:1491–1508

    Article  CAS  Google Scholar 

  • Hsu SY, Senda M, Kanazawa H, Tsuchiya T, Futai M (1984) Biochemistry 23:988–993

    Article  CAS  Google Scholar 

  • Hevkeshoven J, Dernick R (1985) Electrophoresis 6:103

    Article  Google Scholar 

  • Issartel JP, Favre-Bulle O, Lunardi J, Vignais PV (1987) J Biol Chem 262:13538–13544

    CAS  Google Scholar 

  • Kagawa Y, Otha S, Otawara-Hamamoto Y (1989) FEBS Lett 249:67–69

    Article  CAS  Google Scholar 

  • Kasamo K, Kagita F, Arai Y (1989) Plant Cell Physiol 30:729–738

    CAS  Google Scholar 

  • Kironde FAS, Cross RL (1986) J Biol Chem 261:12544–12549

    CAS  Google Scholar 

  • Khananshvili D, Gromet-Elhanan Z (1985) Proc Natl Acad Sci USA 82:1886–1890

    Article  CAS  Google Scholar 

  • Laemmli WK (1970) Nature 22:680–685

    Article  Google Scholar 

  • Markan K, Al-Shawi, Personage D, Senior AE (1990) J Biol Chem 265:5595–5601

  • Miwa K, Yoshida M (1989) Proc Natl Acad Sci USA 86:6484–6487

    Article  CAS  Google Scholar 

  • Nájera-Peña H, Vázquez-Contreras E, Tuena de Gómez-Puyou M, Perez-Hernández G (1999) Biochem Biophys Res Comm 266:58–61

    Article  Google Scholar 

  • Ohta S, Tsuboi M, Oshima T, Yoshida M, Kagawa Y (1980) J Biochem 87:1609–1617

    CAS  Google Scholar 

  • Pérez-Hernández G, García-Hernández E, Zubillaga RA, Tuena de Gómez M (2002) Arch Biochem Biophys 408:177–183

    Article  Google Scholar 

  • Philosoph S, Binder A, Gromet-Elhanan Z (1977) J Biol Chem 252:8747–8752

    CAS  Google Scholar 

  • Pullman ME, Penefsky HS, Datta A, Racker E (1960) J Biol Chem 235:3322–3329

    CAS  Google Scholar 

  • Richter ML, Gromet-Elhanan Z, McCarty RE (1986) J Biol Chem 261:12109–12113

    CAS  Google Scholar 

  • Roux-Fromy M, Neuman JM, Berger AF, Girault G, Galmiche JM, Remy R (1987) Biochem Biophys Res Comm 144:718–725

    Article  CAS  Google Scholar 

  • Sosa A, Célis H (1995) Arch Biochem Biophys 316:421–427

    Article  CAS  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Science 286:1700–1705

    Article  CAS  Google Scholar 

  • Tuena de Gómez-Puyou M, García JJ, Gómez-Puyou A (1993) Biochemistry 32:2213–2218

    Article  Google Scholar 

  • Wang W, Malcolm BA (2002) Methods Mol Biol 182:37–43

    CAS  Google Scholar 

  • Xolalpa W, Vallecillo AJ, Lara M, Mendoza-Hernández G, Comino M, Spallek R, Singh M, Espitia C (2007) Proteomics 7:3332–3341

    Article  CAS  Google Scholar 

  • Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) J Am Chem Soc 126:16632–16338

    Article  CAS  Google Scholar 

  • Yoshida M, Sone N, Hirata H, Kagawa Y (1977) J Biol Chem 252:3480–3485

    CAS  Google Scholar 

  • Zancani M, Casolo V, Peresson C, Federici G, Urbano A, Macri F, Vianello A (2003) Mitochondrion 3:111–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marietta Tuena de Gómez-Puyou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

José-Nuñez, C., Torres-Larios, A., Ramírez-Silva, L. et al. Catalysis by isolated β-subunits of the ATP Synthase/ATPase from Thermophilic bacillus PS3. Hydrolysis of Pyrophosphate. J Bioenerg Biomembr 40, 561–568 (2008). https://doi.org/10.1007/s10863-008-9192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9192-4

Keywords

Navigation