The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance

  • Chris E. Cooper
  • Guy C. Brown


The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.


Cytochrome oxidase Mitochondria Inhibition Nitric oxide Carbon monoxide Hydrogen cyanide Hydrogen sulfide 


  1. Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615CrossRefGoogle Scholar
  2. Antonini E, Brunori M, Greenwood C, Malmstrom BG, Rotilio GC (1971) Eur J Biochem 23:396–400CrossRefGoogle Scholar
  3. Antunes F, Boveris A, Cadenas E (2004) Proc Natl Acad Sci USA 101:16774–16779CrossRefGoogle Scholar
  4. Babcock GT, Wikström M (1992) Nature 356:301–309CrossRefGoogle Scholar
  5. Bellamy TC, Griffiths C, Garthwaite J (2002) J Biol Chem 277:31801–38107CrossRefGoogle Scholar
  6. Berka V, Vygodina T, Musatov A, Nicholls P, Konstantinov AA (1993) FEBS Lett 315:237–241CrossRefGoogle Scholar
  7. Bhatia M (2005) IUBMB Life 57:603–606CrossRefGoogle Scholar
  8. Blackstone E, Roth MB (2007) Shock 27:370–372CrossRefGoogle Scholar
  9. Blackstone E, Morrison M, Roth MB (2005) Science 308:518CrossRefGoogle Scholar
  10. Borowitz JL, Gunasekar PG, Isom GE (1997) Brain Res 768:294–300CrossRefGoogle Scholar
  11. Brown GC (2007) Front Biosci 12:1024–1033CrossRefGoogle Scholar
  12. Brown GC, Cooper CE (1994) FEBS Lett 356:295–298CrossRefGoogle Scholar
  13. Brown GC, Borutaite V (2007) Cardiovasc Res 75:283–290CrossRefGoogle Scholar
  14. Chance B (1965) J Gen Physiol 49(Suppl):163–195CrossRefGoogle Scholar
  15. Chance B, Erecinska M, Wagner M (1970) Ann N Y Acad Sci 174:193–204CrossRefGoogle Scholar
  16. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Am J Physiol Heart Circ Physiol 287:H2316–H2323CrossRefGoogle Scholar
  17. Cipollone R, Visca P (2007) IUBMB Life 59:187–189CrossRefGoogle Scholar
  18. Clementi E, Brown GC, Foxwell N, Moncada S (1999) Proc Natl Acad Sci USA 96:1559–1562CrossRefGoogle Scholar
  19. Coburn RF (ed) (1970) Biological effects of carbon monoxide Ann N Y Acad Sci 174, New YorkGoogle Scholar
  20. Cooper CE (2002) Trends Biochem Sci 27:33–39CrossRefGoogle Scholar
  21. Cooper CE, Giulivi C (2007) Am J Physiol Cell Physiol 292:C1993–2003CrossRefGoogle Scholar
  22. Cooper CE, Markus M, Seetulsingh SP, Wrigglesworth JM (1993) Biochem J 290:139–144Google Scholar
  23. Cooper CE, Torres J, Sharpe MA, Wilson MT (1997) FEBS Lett 414:281–284CrossRefGoogle Scholar
  24. Cooper CE, Mason MG, Nicholls P (2008) Biochim Biophys Acta 1777:867–876CrossRefGoogle Scholar
  25. D’Amico G, Lam F, Hagen T, Moncada S (2006) J Cell Sci 119:2291–2298CrossRefGoogle Scholar
  26. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Anal Biochem 341:40–51CrossRefGoogle Scholar
  27. Durante W, Johnson FK, Johnson RA (2006) J Cell Mol Med 10:672–686CrossRefGoogle Scholar
  28. Foresti R, Bani-Hani MG, Motterlini R (2008) Intensive Care Med 34:649–658CrossRefGoogle Scholar
  29. Giuffre A, Barone MC, Mastronicola D, D’Itri E, Sarti P, Brunori M (2000) Biochemistry 39:15446–15453CrossRefGoogle Scholar
  30. Giuffre A, Barone MC, Brunori M, D’Itri E, Ludwig B, Malatesta F, Muller HW, Sarti P (2002) J Biol Chem 277:22402–22406CrossRefGoogle Scholar
  31. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Faseb J 21:1699–1706CrossRefGoogle Scholar
  32. Griffiths MJ, Evans TW (2005) N Engl J Med 353:2683–2695CrossRefGoogle Scholar
  33. Gunasekar PG, Borowitz JL, Turek JJ, Van Horn DA, Isom GE (2000) J Neurosci Res 61:570–575CrossRefGoogle Scholar
  34. Gunasekar PG, Prabhakaran K, Li L, Zhang L, Isom GE, Borowitz JL (2004) Neurosci Res 49:13–18CrossRefGoogle Scholar
  35. Hill BC, Woon T-C, Nicholls P, Peterson J, Greenwood C, Thomson AJ (1984) Biochem J 224:591–600Google Scholar
  36. Ishii A, Seno H, Watanabe-Suzuki K, Suzuki O, Kumazawa T (1998) Anal Chem 70:4873–4876CrossRefGoogle Scholar
  37. Kaczorowski DJ, Zuckerbraun BS (2007) Curr Med Chem 14:2720–2725CrossRefGoogle Scholar
  38. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232CrossRefGoogle Scholar
  39. Kashiba M, Kajimura M, Goda N, Suematsu M (2002) Keio J Med 51:1–10Google Scholar
  40. Kimura H (2002) Mol Neurobiol 26:13–19CrossRefGoogle Scholar
  41. Kinsella JP (2006) Curr Opin Pediatr 18:107–111CrossRefGoogle Scholar
  42. Koehler RC, Traystman RJ (2002) Antioxid Redox Signal 4:279–290CrossRefGoogle Scholar
  43. Lancaster J Jr (ed) (1996) Nitric oxide: principles and actions. Academic, San DiegoGoogle Scholar
  44. Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Toxicol Sci 101:101–111CrossRefGoogle Scholar
  45. Leschelle X, Goubern M, Andriamihaja M, Blottiere HM, Couplan E, Gonzalez-Barroso MD, Petit C, Pagniez A, Chaumontet C, Mignotte B, Bouillaud F, Blachier F (2005) Biochim Biophys Acta 1725:201–212Google Scholar
  46. Li L, Moore PK (2007) Biochem Soc Trans 35:1138–1141CrossRefGoogle Scholar
  47. Lowicka E, Beltowski J (2007) Pharmacol Rep 59:4–24Google Scholar
  48. Lundquist P, Sorbo B (1989) Clin Chem 35:617–619Google Scholar
  49. Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Proc Natl Acad Sci USA 103:708–713CrossRefGoogle Scholar
  50. Medical and biological effects of environmental pollutants: subcommittee on hydrogen sulfide (ed) (1979) Hydrogen sulfide. University Park Press, BaltimoreGoogle Scholar
  51. Mitchell R, Brown S, Mitchell P, Rich PR (1992) Biochim Biophys Acta 1100:40–48CrossRefGoogle Scholar
  52. Moody AJ (1996) Biochim Biophys Acta 1276:6–20CrossRefGoogle Scholar
  53. Nicholls P (1975) Biochim Biophys Acta 396:24–35CrossRefGoogle Scholar
  54. Nicholls P (1976) Biochim Biophys Acta 430:13–29CrossRefGoogle Scholar
  55. Nicholls P (1979) Biochem J 183:519–529Google Scholar
  56. Nicholls P, Mochan E (1967) Biochim Biophys Acta 131:397–400CrossRefGoogle Scholar
  57. Nicholls P, Chance B (1974) In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, New York, pp 479–534Google Scholar
  58. Nicholls P, Kim JK (1981) Biochim Biophys Acta 637:312–320CrossRefGoogle Scholar
  59. Nicholls P, Kim JK (1982) Can J Biochem 60:613–623CrossRefGoogle Scholar
  60. Nicholls P, van Buuren KJ, van Gelder BF (1972) Biochim Biophys Acta 275:279–287CrossRefGoogle Scholar
  61. Pearce LL, Bominaar EL, Hill BC, Peterson J (2003) J Biol Chem 278:52139–52145CrossRefGoogle Scholar
  62. Petersen LC (1977) Biochim Biophys Acta 460:299–307CrossRefGoogle Scholar
  63. Rich PR, Meunier B, Mitchell R, Moody AJ (1996) Biochim Biophys Acta 1275:91–95CrossRefGoogle Scholar
  64. Sharpe MA, Cooper CE (1998) Biochem J 332:9–19Google Scholar
  65. Stannard JN, Horecker BL (1948) J Biol Chem 172:599–608Google Scholar
  66. Stelmaszynska T (1986) Int J Biochem 18:1107–1114CrossRefGoogle Scholar
  67. Szabo C (2007) Nat Rev Drug Discov 6:917–935CrossRefGoogle Scholar
  68. Tang G, Wu L, Liang W, Wang R (2005) Mol Pharmacol 68:1757–1764Google Scholar
  69. Timkovich R, Thrasher JS (1988) Biochemistry 27:5383–5388CrossRefGoogle Scholar
  70. Torres J, Sharpe MA, Rosquist A, Cooper CE, Wilson MT (2000) FEBS Lett 475:263–266CrossRefGoogle Scholar
  71. Ubuka T (2002) J Chromatogr B Analyt Technol Biomed Life Sci 781:227–249CrossRefGoogle Scholar
  72. Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) (1981) Cyanide in biology. Academic Press, LondonGoogle Scholar
  73. Villani G, Greco M, Papa S, Attardi G (1998) J Biol Chem 273:31829–31836CrossRefGoogle Scholar
  74. Vlasova II, Tyurin VA, Kapralov AA, Kurnikov IV, Osipov AN, Potapovich MV, Stoyanovsky DA, Kagan VE (2006) J Biol Chem 281:14554–14562CrossRefGoogle Scholar
  75. Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM (2008) Anesthesiology 108:659–668CrossRefGoogle Scholar
  76. Wang R (2002) Faseb J 16:1792–1798CrossRefGoogle Scholar
  77. Wang R (2003) Antioxid Redox Signal 5:493–501CrossRefGoogle Scholar
  78. Wever R, van GB, Dervartanian DV (1975) Biochim Biophys Acta 387:189–193CrossRefGoogle Scholar
  79. Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937Google Scholar
  80. Wilson MT, Antonini G, Malatesta F, Sarti P, Brunori M (1994) J Biol Chem 269:24114–24119Google Scholar
  81. Yong R, Searcy DG (2001) Comp Biochem. Physiol B Biochem Mol Biol 129:1291–1237Google Scholar
  82. Young LJ, Caughey WS (1986a) Biochem J 239:225–227Google Scholar
  83. Young LJ, Caughey WS (1986b) Biochemistry 25:152–161CrossRefGoogle Scholar
  84. Zuckerbraun BS, Chin BY, Bilban M, de Costa d’Avila J, Rao J, Billiar TR, Otterbein LE (2007) Faseb J 21:1099–1106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of EssexColchesterUK
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations