Skip to main content
Log in

Phosphorylation in the C-terminus of the rat connexin46 (rCx46) and regulation of the conducting activity of the formed connexons

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

To analyse the role of PKC-dependent phosphorylation in the C-terminus of rCx46 in regulation of rCx46 connexons, truncated mutants rCx4645.3 and rCx4644.2 which end before and after PKC-dependent phosphorylation sites respectively were generated. Both rCx4645.3 and rCx4644.2 formed connexons in Xenopus oocytes similar to Cx46wt-connexons. They were activated by depolarisation above −40 mV and at voltages above 50 mV, inactivation was spontaneously observed or induced by PKC activator TPA, suggesting that inactivation does not require PKC-dependent phosphorylation in the C-terminus. Three casein-kinase-II-(CKII)-dependent phosphorylation sites were also identified. rCx4637.7 and rCx4628.2 respectively without two or all of these sites were generated. rCx4637.7-connexons were similar to rCx46wt-connexons. rCx4628.2-connexons comparable to rCx46wt-connexons were observed after injection of 50 times more rCx4628.2-mRNA (25 ng per oocyte). CKII-blocker inhibited depolarisation-evoked currents in oocytes injected with 0.5 ng per oocyte rCx4637.7-mRNA or rCx46wt-mRNA. Injection of 25 ng per oocyte rCx4637.7-mRNA or rCx46wt-mRNA overcame the effect of CKII-inhibitor. We propose that CKII-dependent phosphorylation in the C-terminus accelerates formation of rCx46-connexons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthoud VM, Beyer EC, Kurata WE, Lau AF, Lampe PD (1997) The gap-junction protein connexin 56 is phosphorylated in the intracellular loop and the carboxy-terminal region. Eur J Biochem 244:89–97

    Article  CAS  Google Scholar 

  • Calero G, Kanemitsu M, Taffet SM, Lau AF, Delmar M (1998) A 17mer peptide interferes with acidification-induced uncoupling of connexin43. Circ Res 82:929–935

    CAS  Google Scholar 

  • Castro C, Gomez-Hernandez JM, Silander K, Barrio LC (1999) Altered formation of connexons and gap junction channels caused by c-terminal connexin-32 mutations. J Neurosci 19:3752–3760

    CAS  Google Scholar 

  • Chappell RL, Zakevicius J, Ripps H (2003) Zinc modulation of connexon currents in Xenopus oocytes. Biol Bull 205:209–211

    Article  CAS  Google Scholar 

  • Cruciani V, Mikalsen SO (2002) Connexins, gap junctional intercellular communication and kinases. Biol Cell 94:433–443

    Article  CAS  Google Scholar 

  • DeVries SH, Schwarz BA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 445:201–230

    CAS  Google Scholar 

  • Eastman SD, Chen THP, Falk MM, Mendelson TC, Iovine MK (2006) Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics 87:265–274

    Article  CAS  Google Scholar 

  • Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102:59–74

    Article  CAS  Google Scholar 

  • Ebihara L, Berthoud VM, Beyer EC (1995) Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J 68:1796–1803

    Article  CAS  Google Scholar 

  • Ek-Vitorin J, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M (1996) pH regulation of connexin43: molecular analysis of the gating particle. Biophys J 71:1273–1284

    Article  CAS  Google Scholar 

  • Evans WH, De Vuyste E, Leybaert L (2006) The gap junction cellular internet: connexin connexons enter the signalling limelight. Biochem J 397:1–14

    Article  CAS  Google Scholar 

  • George CH, Kendall JM, Evans WH (1999) Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274:8678–8685

    Article  CAS  Google Scholar 

  • Gonzalez D, Gomez-Hernandez JM, Barrio LC (2006) Species specificity of mammalian connexin-26 to form open voltage-gated connexons. FASEB J 20:2329–2338

    Article  CAS  Google Scholar 

  • Gupta VK, Berthoud VM, Atal N, Jarillo JA, Barrio LC, Beyer EC (1994) Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and fundamental expression. Invest Ophthalmol Vis Sci 35:3747–3758

    CAS  Google Scholar 

  • Jedamzik B, Marten I, Ngezahayo A, Ernst A, Kolb HA (2000) Regulation of lens rCx46-formed connexons by activation of protein kinase C, external Ca2+ and protons. J Membr Biol 173:39–46

    Article  CAS  Google Scholar 

  • Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R (2001) connexon-mediated inhibition in the outer retina. Science 292:1178–1180

    Article  CAS  Google Scholar 

  • Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  CAS  Google Scholar 

  • Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215

    Article  CAS  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  CAS  Google Scholar 

  • Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 98:861–871

    Article  Google Scholar 

  • Malchow RP, Qian H, Ripps H (1993) Evidence for hemi-gap junctional channels in isolated horizontal cells of the skate retina. J Neurosci Res 35:237–245

    Article  CAS  Google Scholar 

  • Morley GE, Taffet SM, Delmar M (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70:1294–1302

    Article  CAS  Google Scholar 

  • Ngezahayo A, Zeilinger C, Todt I, Marten I, Kolb HA (1998) Inactivation of expressed and conducting rCx46 connexons by phosphorylation. Pflügers Arch 436:627–629

    Article  CAS  Google Scholar 

  • Pagano MA, Meggio, F, Ruzzene M, Andrzejewska M, Kazimierczuk Z, Pinna LA (2004) 2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun 321:1040–1044

    Article  CAS  Google Scholar 

  • Park DJ, Freitas TA, Wallick CJ, Guyette CV, Warner-Cramer BJ (2007) Molecular dynamics and in vitro analysis of connexin43: a new 14-3-3 mode-1 interacting protein. Protein Sci 15:2344–2355

    Article  CAS  Google Scholar 

  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    Article  CAS  Google Scholar 

  • Ripps H, Qian H, Zakevicius J (2004) Properties of connexin26 connexons expressed in Xenopus oocytes. Cell Mol Neurobiol 24:647–667

    Article  CAS  Google Scholar 

  • Rup DM, Veenstra RD, Wang HZ, Brink PR, Beyer EC (1993) Chick connexin-56, a novel lens gap junction protein. Molecular cloning and functional expression. J Biol Chem 268:706–712

    CAS  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    CAS  Google Scholar 

  • Steffens M, Göpel F, Ngezahayo A, Zeilinger C, Ernst A, Kolb HA (2008) Regulation of connexons composed of human connexin26 (hCx26) by temperature. Biochim Biophys Acta 1778:1206–1212

    Article  CAS  Google Scholar 

  • Thomas MA, Huang S, Cokoja A, Riccio O, Staub O, Suter S, Chanson M (2002) Interaction of connexins with protein partners in the control of channel turnover and gating. Biol Cell 94:445–456

    Article  CAS  Google Scholar 

  • Traub O, Loo J, Dermietzel R, Brümmer F, Hülser D, Willecke K (1989) Comparative characterization of the 21-kD and the 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 108:1039–1051

    Article  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  CAS  Google Scholar 

  • Zampighi GA, Loo DDF, Kreman M, Eskandari F, Wright EM (1999) Functional and morphological correlates of connexin50 expressed in Xenopus laevis Oocytes. J Gen Physiol 113:507–523

    Article  CAS  Google Scholar 

  • Zeilinger C, Steffens M, Kolb HA (2005) Length of C-terminus of rCx46 influences oligomerization and connexon properties. Biochim Biophys Acta 1720:35–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anaclet Ngezahayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, W.J., Zeilinger, C., Bintig, W. et al. Phosphorylation in the C-terminus of the rat connexin46 (rCx46) and regulation of the conducting activity of the formed connexons. J Bioenerg Biomembr 40, 397–405 (2008). https://doi.org/10.1007/s10863-008-9151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9151-0

Keywords

Navigation