Skip to main content

Advertisement

Log in

Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen

  • Introduction
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

As a new faculty member at The Johns Hopkins University, School of Medicine, the author began research on cancer in 1969 because this frequently fatal disease touched many whom he knew. He was intrigued with its viscous nature, the failure of all who studied it to find a cure, and also fascinated by the pioneering work of Otto Warburg, a biochemical legend and Nobel laureate. Warburg who died 1 year later in 1970 had shown in the 1920s that the most striking biochemical phenotype of cancers is their aberrant energy metabolism. Unlike normal tissues that derive most of their energy (ATP) by metabolizing the sugar glucose to carbon dioxide and water, a process that involves oxygen-dependent organelles called “mitochondria”, Warburg showed that cancers frequently rely less on mitochondria and obtain as much as 50% of their ATP by metabolizing glucose directly to lactic acid, even in the presence of oxygen. This frequent phenotype of cancers became known as the “Warburg effect”, and the author of this review strongly believed its understanding would facilitate the discovery of a cure. Following in the final footsteps of Warburg and caught in the midst of an unpleasant anti-Warburg, anti-metabolic era, the author and his students/collaborators began quietly to identify the key molecular events involved in the “Warburg effect”. Here, the author describes via a series of sequential discoveries touching five decades how despite some impairment in the respiratory capacity of malignant tumors, that hexokinase 2 (HK-2), its mitochondrial receptor (VDAC), and the gene that encodes HK-2 (HK-2 gene) play the most pivotal and direct roles in the “Warburg effect”. They discovered also that like a “Trojan horse” the simple lactic acid analog 3-bromopyruvate selectively enters the cells of cancerous animal tumors that exhibit the “Warburg effect” and quickly dissipates their energy (ATP) production factories (i.e., glycolysis and mitochondria) resulting in tumor destruction without harm to the animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.L. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39, 211–222 (2007). https://doi.org/10.1007/s10863-007-9094-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9094-x

Keywords

Navigation