Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 3, pp 247–250 | Cite as

Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect

  • Paul C. Herrmann
  • E. Clifford Herrmann
Mini Review

Abstract

By manipulating the physical properties of oxygen, cells are able to harvest the large thermodynamic potential of oxidation to provide a substantial fraction of the energy necessary for cellular processes. The enzyme largely responsible for this oxygen manipulation is cytochrome c oxidase, which resides at the inner mitochondrial membrane. For unknown reasons, cancer cells do not maximally utilize this process, but instead rely more on an anaerobic-like metabolism demonstrating the so-called Warburg effect. As the enzyme at the crossroads of oxidative metabolism, cytochrome c oxidase might be expected to play a role in this so-called Warburg effect. Through protein assay methods and metabolic studies with radiolabeled glucose, alterations associated with cancer and cytochrome c oxidase subunit levels are explored. The implications of these findings for cancer research are discussed briefly.

Keywords

Cancer Cytochrome c oxidase Metabolism Oxygen Warburg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bongaerts GP, van Halteren HK, Verhagen CA, Wagner DJ (2006) Med Hypotheses 67:1213–1222CrossRefGoogle Scholar
  2. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) Proc Natl Acad Sci USA 96:3047–3052CrossRefGoogle Scholar
  3. Collman JP, Herrmann PC, Boitrel B, Zhang X, Eberspacher TA, Fu L, Wang J, Rousseau DL, Williams ER (1994) J Am Chem Soc 116:9783–9784CrossRefGoogle Scholar
  4. Collman JP, Fu L, Herrmann PC, Zhang X (1997) Science 275:949–951CrossRefGoogle Scholar
  5. Collman JP, Fu L, Herrmann PC, Wang Z, Rapta M, Broring M, Schwenninger R, Boitrel B (1998) Angew Chem (Int Ed) 37:3397–3400CrossRefGoogle Scholar
  6. Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Chem Rev 104:561–588CrossRefGoogle Scholar
  7. Collman JP, Devaraj NK, Decreau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED (2007) Science 315:1565–1568CrossRefGoogle Scholar
  8. Herrmann PC (1996) Synthetic models of cytochrome c oxidase and myoglobin. Dissertation, Stanford University Department of Chemistry, pp 1–28Google Scholar
  9. Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS, Kohn EC, Emmert-Buck MR, Liotta LA, Petricoin EF III (2003) Proteomics 3:1801–1810CrossRefGoogle Scholar
  10. Hey Y, Hoggard N, Burt E, James LA, Varley JM (1997) Cytogenet Cell Genet 77:167–168CrossRefGoogle Scholar
  11. Hofmann S, Lichtner P, Schuffenhauser S, Gerbitz KD, Meitinger T (1998) Cytogenet Cell Genet 83:226–227CrossRefGoogle Scholar
  12. Holmes FL (1985) Lavoisier and the chemistry of life: an exploration of scientific creativity. University of Wisconsin Press, MadisonGoogle Scholar
  13. Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Free Radic Biol Med 29:211–221CrossRefGoogle Scholar
  14. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Biochem Biophys Res Commun 324:269–275CrossRefGoogle Scholar
  15. Krieg RC, Knuechel R, Schiffmann E, Liotta LA, Petricoin EF III, Herrmann PC (2004a) Proteomics 4:2789–2795CrossRefGoogle Scholar
  16. Krieg RC, Liotta LA, Petricoin EF III, Herrmann PC (2004b) J Biochem Biophys Methods 58:119–124CrossRefGoogle Scholar
  17. Lee N, Morin C, Mitchell G, Robinson BH (1998) Biochim Biophys Acta 1406:1–4Google Scholar
  18. Mathupala SP, Rempel A, Pedersen PL (1997) J Bioenerg Biomembranes 29:339–343CrossRefGoogle Scholar
  19. Mathupala SP, Ko YH, Pedersen PL (2006) Oncogene 25:4777–4786CrossRefGoogle Scholar
  20. Nakashima RA, Paggi MG, Pedersen PL (1984) Cancer Res 44:5702–5706Google Scholar
  21. Pedersen PL (1978) Prog Exp Tumor Res 22:190–274Google Scholar
  22. Perrin A, Roudier E, Duborjal H, Bachelet C, Riva-Lavieille C, Leverve X, Massarelli R (2002) Biochimie 84:1003–1011CrossRefGoogle Scholar
  23. Tisdale MJ (1997) J Natl Cancer Inst 89:1763–1773CrossRefGoogle Scholar
  24. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, ShinzawaItoh K, Nakashima R, Yaona R, Yoshikawa S (1996) Science 272:1136–1144CrossRefGoogle Scholar
  25. Vijayasarathy C, Biunno I, Lenka N, Yang M, Basu A, Hall IP, Avadhani NG (1998) Biochim Biophys Acta 1371:71–82CrossRefGoogle Scholar
  26. Warburg O (1925) Ber Dtsch Chem Ges 58:1001–1003CrossRefGoogle Scholar
  27. Warburg O (1929) Biochem Z 204:482–494Google Scholar
  28. Warburg O (1930) Metabolism of tumors. Arnold Constable, LondonGoogle Scholar
  29. Warburg O (1956) Science 123:309–314CrossRefGoogle Scholar
  30. Warburg O, Kubowitz F (1927) Biochem Z 189:242–249Google Scholar
  31. Warburg O, Negelein E (1928) Biochem Z 193:334–339Google Scholar
  32. Warburg O, Posenor K, Negelein E (1924) Biochem Z 152:309–345Google Scholar
  33. Yanamara W, Zhang YZ, Takamiya S, Capaldi RA (1988) Biochemistry 27:4909–4914CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PathologyLoma Linda University, School of MedicineLoma LindaUSA
  2. 2.Department of BiochemistryLoma Linda University, School of MedicineLoma LindaUSA

Personalised recommendations