The cancer cell’s “power plants” as promising therapeutic targets: An overview

Abstract

This introductory article to the review series entitled “The Cancer Cell’s Power Plants as Promising Therapeutic Targets” is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., “power plants.” All nucleated animal/human cells have two types of power plants, i.e., systems that make the “high energy” compound ATP from ADP and P i . One type is “glycolysis,” the other the “mitochondria.” In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen (“Warburg effect”). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing “necrotic cell death” and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83–91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269–275, 2004). A second approach is to induce only cancer cells to undergo “apoptotic cell death.” Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce “necrotic,” “apoptotic” or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.

This is a preview of subscription content, access via your institution.

References

  1. Aisenberg AC (1961) The glycolysis and respiration of tumors. Academic Press, New York and London Part II: The Oxidative Metabolism of Tumors, pp 156–157

    Google Scholar 

  2. Allison PD (1995) In: Survival analysis using SAS, A practical guide, Chapter 3, SAS Publishing, Cary, North Carolina, pp 30–32

    Google Scholar 

  3. Andre N, Rome A, Carre M (2006) Archives de Pediatrie 13:69–75

    PubMed  Article  CAS  Google Scholar 

  4. Arora KK, Pedersen PL (1988) J Biol Chem 263:17422–17428

    PubMed  CAS  Google Scholar 

  5. Arunkumar A, Vijayababu MR, Gunadharini N, Krishnamoorthy G, Arunakaran J (2006) Cancer Lett. Epub ahead of print

  6. Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, Layfield R, Ray DE, Westwell AD, Alexander SP, Kendall DA, Lobo DN, Watson SA, Lophatanon A, Muir KA, Guo DA, Bates TE (2007) Biochem Biophys Res Commun 354:50–55

    PubMed  Article  CAS  Google Scholar 

  7. Badros A, Goloubeva O, Fenton R, Rapoport AP, Akpek G, Harris C, Ruehle K, Westphal S, Meisenberg B (2006) Clin Lymphoma Myeloma 7:210–216

    PubMed  CAS  Article  Google Scholar 

  8. Barna G, Sebestyen A, Weischede S, Petak I, Mihalik R, Formelli F, Kopper L (2005) Anticancer Res 25:4179–4185

    PubMed  CAS  Google Scholar 

  9. Bleday R, Weiss MJ, Salem RR, Wilson RE, Chen LB, Steele G Jr (1986) Arch Surg 121:1272–1275

    PubMed  Article  CAS  Google Scholar 

  10. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) Cancer Cell 11:37–51

    PubMed  Article  CAS  Google Scholar 

  11. Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) J Clin Invest 115:2640–2647

    PubMed  Article  CAS  Google Scholar 

  12. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, VonHoff DD, Eckhardt SG (2000) Clin Cancer Res 6:42–49

    PubMed  CAS  Google Scholar 

  13. Bustamante E, Pedersen PL (1977) Proc Natl Acad Sci (USA) 74:3735–3739

    Article  ADS  CAS  Google Scholar 

  14. Campas C, Cosialls AM, Barragan M, Iglesias-Serret D, Santidrian AF, Coll-Mulet L, de Frias M, Domingo A, Pons G, Gil J (2006) Exp Hematol 34:1663–1669

    Google Scholar 

  15. Carter BZ, Mak DH, Schober WD, McQueen T, Harris D, Estrov Z, Evans RL, Andreeff M (2006) Blood 108:630–637

    PubMed  Article  CAS  Google Scholar 

  16. Cereghetti GM, Scorrano L (2006) Oncogene 25:4717–4724

    PubMed  Article  CAS  Google Scholar 

  17. Chen BJ (2001) Leuk Lymphoma 42:253–265

    PubMed  CAS  Google Scholar 

  18. Chen J, Ramos J, Sirisawad M, Miller R, Naumovski L (2005) Apoptosis 10:1131–1142

    PubMed  Article  CAS  Google Scholar 

  19. Chen LB (1989) Methods Cell Biol 29:103–123

    PubMed  CAS  Article  Google Scholar 

  20. Cherry SR (2006) J Nuc Med 47:1735–1745

    CAS  Google Scholar 

  21. Chitambar CR, Wereley JP, Matsuyama SM (2006) Cancer Ther 5:2834–2843

    Article  CAS  Google Scholar 

  22. Dancy J, Sausville EA (2003) Nat Rev Drug Discov 2:296–313

    Article  CAS  Google Scholar 

  23. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A (2007) J Clin Invest 117:112–121

    PubMed  Article  CAS  Google Scholar 

  24. Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F (2003) Drugs Today (Barc) 39:157–174

    Article  Google Scholar 

  25. Don AS, Hogg PJ (2004) Trends Mol Med 10:372–378

    PubMed  Article  CAS  Google Scholar 

  26. Efferth T (2006) Curr Drug Targets 7:407–421

    PubMed  Article  CAS  Google Scholar 

  27. Eggermont AM (2006) J Clin Oncol 24:4673–4674

    PubMed  Article  Google Scholar 

  28. El-Mahdy MA, Zhu Q, Wang QE, Wani G, Wani AA (2005) Int J Cancer 117:409–417

    PubMed  Article  CAS  Google Scholar 

  29. Elshimali YI, Grody WW (2006) Diagn Mol Pathol 15:187–194

    PubMed  Article  Google Scholar 

  30. Engel M, Mazurek S, Eingenbrodt E, Welter CJ (2004) J Biol Chem 279:35803–35812

    PubMed  Article  CAS  Google Scholar 

  31. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML (2006) Mol Pharm 70:2108–2115

    Article  CAS  Google Scholar 

  32. Farber S (1950) Am J Dis Child 79:961–962

    PubMed  CAS  Google Scholar 

  33. Fischer OM, Streit S, Hart S, Ullrich A (2003) Curr Opin Chem Biol 7:490–495

    PubMed  Article  CAS  Google Scholar 

  34. Fleming A (1929) Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  35. Foubister V (2002) DDT 7:934–935

    PubMed  Google Scholar 

  36. Frankel SR (2003) Semin Oncol 30:300–3004

    PubMed  Article  CAS  Google Scholar 

  37. Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R (2004) Int J Oncol 25:858–866

    Google Scholar 

  38. Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Oncogene 25:4812–4830

    PubMed  Article  CAS  Google Scholar 

  39. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Cancer Res 62:3903–3913

    Google Scholar 

  40. Goodsell DS (2004) The Oncologist 9:226–227

    PubMed  Article  Google Scholar 

  41. Greville G (1969) Curr Top Bioenerg 3:1–78

    CAS  MathSciNet  Google Scholar 

  42. Hosler JP, Ferguson-Miller S, Mills DA (2006) Annu Rev Biochem 75:165–187

    PubMed  Article  CAS  Google Scholar 

  43. Issat T, Jakobisiak M, Golab J (2006) Oncol Rep 16: 1273–1276

    PubMed  CAS  Google Scholar 

  44. Jiang X, Wang X (2004) Annu Rev Biochem 73:87–106

    PubMed  Article  CAS  Google Scholar 

  45. Johnson JH, Belt JA, Dubinsky WP, Zimniak A, Racker E(1980) Biochemistry 19:3836–3840

    Google Scholar 

  46. Johnson LV, Johnson ML, Chen LB (1980) Proc Natl Acad Sci (USA) 77:990–994

    Article  ADS  CAS  Google Scholar 

  47. Kerkela R, Grazette L, Yacobi R, Iliescu C, Pattern R, Beahm C, Walters G, Shevtsov S, Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, A Van Hatten R, Alroy J, Durand J-B, Force T (2006) Nat Med 12:908–916

    PubMed  Article  CAS  Google Scholar 

  48. Kerr JF, Wyllie AH, Currie AR (1972) Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  49. Ko JK, Leung WC, Ho WK, Chiu P (2006) Eur J Pharmacol [Epub ahead of print]

  50. Ko YH, Pedersen PL, Geschwind (2001) Cancer Lett 173:83–91

    Google Scholar 

  51. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Biochem Biophys Res Commun 324:269–275

    PubMed  Article  CAS  Google Scholar 

  52. Koya K, Li Y, Wang H, Ukai T, Tatsukta N, Kawakami M, Shishido, Chen LB (1996) Cancer Res 56:538–543

  53. LeBras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E, Lecellier G, Rebouilat D, Lemaire C, Kroemer G, Jacotot E, Brenner C (2006) Cancer Res 66:9143–9152

    Google Scholar 

  54. Li YC, Fung KP, Kwok TT, Lee CY, Suen YK, Kong SK (2002) Life Sci 71:2729–2740

    PubMed  Article  CAS  Google Scholar 

  55. Malhi H, Gores GJ, Lemasters JJ (2006) Hepatology 43:S31–S44

    PubMed  Article  CAS  Google Scholar 

  56. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science 298:1912–1934

    PubMed  Article  ADS  CAS  Google Scholar 

  57. Marcinkowska A, Malarska A, Saczko J, Chwilkowska A, Wysocka T, Drag-Zalesinska M, Wysocka T, Banas T (2001) Folia Histochem Cytobiol 39(Suppl 2):177–178

    PubMed  Google Scholar 

  58. Mathupala SP, Ko YH, Pedersen PL (2006) Oncogene 25:4777–4786

    PubMed  Article  CAS  Google Scholar 

  59. Mathupala SP, Parajuli P, Sloan AE (2004) Neurosurgery 55:1410–1419

    PubMed  Article  Google Scholar 

  60. McGuire JJ (2003) Curr Pharm Design 9:2593–2613

    Article  CAS  Google Scholar 

  61. Mitchell P (1961) Nature 191:144–148

    PubMed  Article  ADS  CAS  Google Scholar 

  62. Nakashima RA, Paggi MG, Pedersen PL (1984) Cancer Res 44:5702–5706

    PubMed  CAS  Google Scholar 

  63. Nakashima RA, Managan PS, Colombini M, Pedersen PL (1986) Biochemistry 25:1015–1021

    PubMed  Article  CAS  Google Scholar 

  64. Neuzil J, Wang X-F, Dong L-F, Low P, Ralph SJ (2006) FEBS Lett 580:5125–5129

    PubMed  Article  CAS  Google Scholar 

  65. Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M, Isogai E, Kageyama H, Imaizumi M, Nakagawara A (2006) Oncogene 25:5046–5055

    PubMed  Article  CAS  Google Scholar 

  66. Oh KW, Qian T, Brenner DA, Lemaster JJ (2003) Toxicol Sci 73:44–52

    PubMed  Article  CAS  Google Scholar 

  67. Palozza P, Serini S, Torsello A, Dinicuolo F, Maggiano N, Ranelletti FO, Wolf FI, Calviello G (2003) Nutr Cancer 47:76–87

    PubMed  Article  CAS  Google Scholar 

  68. Panichakul T, Intachote P, Wongkajorsilp A, Sripa B, Sirisinha S (2006) Anticancer Res 26(1A):259–265

    PubMed  CAS  Google Scholar 

  69. Pastorino JG, Shulga N, Hoek JB (2002) J Biol Chem 277:7610–7618

    PubMed  Article  CAS  Google Scholar 

  70. Pedersen PL (1978) Prog Exp Tumor Res 22:190–274

    PubMed  CAS  Google Scholar 

  71. Pelicano H, Martin DS, Xu R-H, Huang P (2006) Oncogene 25:4633–4646

    PubMed  Article  CAS  Google Scholar 

  72. Perchellet EM, Wang Y, Weber RL, Lou K, Hua DH, Perchellet JP (2004) Anticancer Drugs 15:929–946

    PubMed  Article  CAS  Google Scholar 

  73. Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, A Van Hatten R, Alroy J, Durand J-B, Force T (2006) Nat Med 12:908–916

    PubMed  Article  CAS  Google Scholar 

  74. Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogus G, Ponzoni M, Rozzo C (2007) Mol Cancer 6:8

  75. Qin J, Xie LP, Zheng XY, Wang YB, Bai Y, Shen HF, Li LC, Dahiya R (2007) Biochem Biophys Res Commun 354:852–857

    PubMed  Article  CAS  Google Scholar 

  76. Rall TW, Sutherland EW (1958) J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  77. Richards GM, Mehta MP (2007) Expert Opin Pharmacother 8:351–359

    PubMed  Article  CAS  Google Scholar 

  78. Roccaro AM, Hideshima T, Richardson PG, Russo D, Ribatti D, Vacca A, Dammacco F, Anderson KC (2006) Curr Pharm Biotechnol 7:441–448

    PubMed  Article  CAS  Google Scholar 

  79. Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K, Zdzisinka B, Kandefer-Szerszen M (2006) Naunyn Schmiedebergs Arch Pharmol 374:11–20

    Article  CAS  Google Scholar 

  80. Sancho P, Galeano E, Nieto E, Delgado MD, Garcia-Perez AI (2007) Leukema Research (On Line)

  81. Schreiber JR, Balcavage WX, Morris HP, Pedersen PL (1970) Cancer Res 30:2497–2501

    PubMed  CAS  Google Scholar 

  82. Shen PF (2004) Front Biosci 9:2663–2670

    PubMed  Article  CAS  Google Scholar 

  83. Shields AF (2006) Mol Imaging Biol 8:141–150

    PubMed  Article  Google Scholar 

  84. Spencer TL, Lehninger AL (1976) Biochem J 154:405–414

    PubMed  CAS  Google Scholar 

  85. Strebhardt K, Ullrich A (2006) N Eng J Med 355:2481–2482

    Article  CAS  Google Scholar 

  86. Sun X, Wong JR, Song K, Hu J, Garlid KD, Chen LB (1994) Cancer Res 54:1465–1471

    PubMed  CAS  Google Scholar 

  87. Sutherland EW, Rall TW (1958) J Biol Chem 232:1077–1092

    PubMed  CAS  Google Scholar 

  88. Tang L, Jin T, Zeng X, Wang JS (2005) J Nutr 135:287–290

    PubMed  CAS  Google Scholar 

  89. Wang Y, Perchellet EM, Ward MM, Lou K, Zhao H, Battina SK, Wiredu B, Hua DH, Perchellet JP (2006b) Int J Oncol 28:161–172

    MATH  Google Scholar 

  90. Wang XS, Yang W, Tao SJ, Li K, Li M, Dong JH, Wang MH (2006a) Yakuqaku Zasshi 126:979–990

    Article  CAS  Google Scholar 

  91. Warburg O (1930) The metabolism of tumors. Constable, London

    Google Scholar 

  92. Weber G (1968) Naturwissenschaften 55:418–429

    PubMed  Article  CAS  Google Scholar 

  93. Weber G (2001) Biochem (Mosc) 66(10):1164–1173

    Article  CAS  Google Scholar 

  94. Weber G, Lea MA (1966) Adv Enzyme Regul 4:115–145

    PubMed  Article  CAS  Google Scholar 

  95. Weinhouse S (1972) Cancer Res 32:2007–2016

    PubMed  CAS  Google Scholar 

  96. Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr, Chen LB (1987) Proc Natl Acad Sci 84:5444–5448

    PubMed  Article  ADS  CAS  Google Scholar 

  97. Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr (1988) Annu Rev Cell Biol 4:155–181

    Google Scholar 

  98. Xu RH, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P (2005) Leukemia 19:2153–2158

    PubMed  Article  CAS  Google Scholar 

  99. Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, Schwartz L, Icard P (2006) Anticancer Res 26: 3561–3566

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter L. Pedersen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pedersen, P.L. The cancer cell’s “power plants” as promising therapeutic targets: An overview. J Bioenerg Biomembr 39, 1–12 (2007). https://doi.org/10.1007/s10863-007-9070-5

Download citation

Keywords

  • Bioenergetics
  • Warburg
  • Warburg effect
  • Cancer
  • Anti-cancer agents
  • Cancer therapy
  • 3-bromopyruvate
  • 3-BrPA
  • Cell death
  • Necrosis
  • Apoptosis
  • Energy metabolism
  • Power plants
  • Glycolysis
  • Mitochondria
  • Cytochrome c