Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Bioenergetics and Biomembranes
  3. Article

The cancer cell’s “power plants” as promising therapeutic targets: An overview

  • Introduction
  • Published: 03 April 2007
  • Volume 39, pages 1–12, (2007)
  • Cite this article
Download PDF
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript
The cancer cell’s “power plants” as promising therapeutic targets: An overview
Download PDF
  • Peter L. Pedersen1 
  • 883 Accesses

  • 163 Citations

  • 7 Altmetric

  • Explore all metrics

Abstract

This introductory article to the review series entitled “The Cancer Cell’s Power Plants as Promising Therapeutic Targets” is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., “power plants.” All nucleated animal/human cells have two types of power plants, i.e., systems that make the “high energy” compound ATP from ADP and P i . One type is “glycolysis,” the other the “mitochondria.” In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen (“Warburg effect”). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing “necrotic cell death” and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83–91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269–275, 2004). A second approach is to induce only cancer cells to undergo “apoptotic cell death.” Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce “necrotic,” “apoptotic” or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.

Article PDF

Download to read the full article text

Similar content being viewed by others

A pro-oxidant combination of resveratrol and copper reduces chemotherapy-related non-haematological toxicities in advanced gastric cancer: results of a prospective open label phase II single-arm study (RESCU III study)

Article 13 November 2022

Vikas Ostwal, Anant Ramaswamy, … Indraneel Mittra

Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression

Article 23 October 2015

Zhaoyong Li & Huafeng Zhang

Preclinical validation of a novel brain-penetrant PET ligand for visualization of histone deacetylase 6: a potential imaging target for neurodegenerative diseases

Article 05 March 2024

Tetsuro Tago, Muneyuki Sakata, … Jun Toyohara

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Aisenberg AC (1961) The glycolysis and respiration of tumors. Academic Press, New York and London Part II: The Oxidative Metabolism of Tumors, pp 156–157

    Google Scholar 

  • Allison PD (1995) In: Survival analysis using SAS, A practical guide, Chapter 3, SAS Publishing, Cary, North Carolina, pp 30–32

    Google Scholar 

  • Andre N, Rome A, Carre M (2006) Archives de Pediatrie 13:69–75

    Article  PubMed  CAS  Google Scholar 

  • Arora KK, Pedersen PL (1988) J Biol Chem 263:17422–17428

    PubMed  CAS  Google Scholar 

  • Arunkumar A, Vijayababu MR, Gunadharini N, Krishnamoorthy G, Arunakaran J (2006) Cancer Lett. Epub ahead of print

  • Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, Layfield R, Ray DE, Westwell AD, Alexander SP, Kendall DA, Lobo DN, Watson SA, Lophatanon A, Muir KA, Guo DA, Bates TE (2007) Biochem Biophys Res Commun 354:50–55

    Article  PubMed  CAS  Google Scholar 

  • Badros A, Goloubeva O, Fenton R, Rapoport AP, Akpek G, Harris C, Ruehle K, Westphal S, Meisenberg B (2006) Clin Lymphoma Myeloma 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Barna G, Sebestyen A, Weischede S, Petak I, Mihalik R, Formelli F, Kopper L (2005) Anticancer Res 25:4179–4185

    PubMed  CAS  Google Scholar 

  • Bleday R, Weiss MJ, Salem RR, Wilson RE, Chen LB, Steele G Jr (1986) Arch Surg 121:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  • Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) J Clin Invest 115:2640–2647

    Article  PubMed  CAS  Google Scholar 

  • Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, VonHoff DD, Eckhardt SG (2000) Clin Cancer Res 6:42–49

    PubMed  CAS  Google Scholar 

  • Bustamante E, Pedersen PL (1977) Proc Natl Acad Sci (USA) 74:3735–3739

    Article  ADS  CAS  Google Scholar 

  • Campas C, Cosialls AM, Barragan M, Iglesias-Serret D, Santidrian AF, Coll-Mulet L, de Frias M, Domingo A, Pons G, Gil J (2006) Exp Hematol 34:1663–1669

    Google Scholar 

  • Carter BZ, Mak DH, Schober WD, McQueen T, Harris D, Estrov Z, Evans RL, Andreeff M (2006) Blood 108:630–637

    Article  PubMed  CAS  Google Scholar 

  • Cereghetti GM, Scorrano L (2006) Oncogene 25:4717–4724

    Article  PubMed  CAS  Google Scholar 

  • Chen BJ (2001) Leuk Lymphoma 42:253–265

    PubMed  CAS  Google Scholar 

  • Chen J, Ramos J, Sirisawad M, Miller R, Naumovski L (2005) Apoptosis 10:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Chen LB (1989) Methods Cell Biol 29:103–123

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR (2006) J Nuc Med 47:1735–1745

    CAS  Google Scholar 

  • Chitambar CR, Wereley JP, Matsuyama SM (2006) Cancer Ther 5:2834–2843

    Article  CAS  Google Scholar 

  • Dancy J, Sausville EA (2003) Nat Rev Drug Discov 2:296–313

    Article  CAS  Google Scholar 

  • Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A (2007) J Clin Invest 117:112–121

    Article  PubMed  CAS  Google Scholar 

  • Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F (2003) Drugs Today (Barc) 39:157–174

    Article  Google Scholar 

  • Don AS, Hogg PJ (2004) Trends Mol Med 10:372–378

    Article  PubMed  CAS  Google Scholar 

  • Efferth T (2006) Curr Drug Targets 7:407–421

    Article  PubMed  CAS  Google Scholar 

  • Eggermont AM (2006) J Clin Oncol 24:4673–4674

    Article  PubMed  Google Scholar 

  • El-Mahdy MA, Zhu Q, Wang QE, Wani G, Wani AA (2005) Int J Cancer 117:409–417

    Article  PubMed  CAS  Google Scholar 

  • Elshimali YI, Grody WW (2006) Diagn Mol Pathol 15:187–194

    Article  PubMed  Google Scholar 

  • Engel M, Mazurek S, Eingenbrodt E, Welter CJ (2004) J Biol Chem 279:35803–35812

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML (2006) Mol Pharm 70:2108–2115

    Article  CAS  Google Scholar 

  • Farber S (1950) Am J Dis Child 79:961–962

    PubMed  CAS  Google Scholar 

  • Fischer OM, Streit S, Hart S, Ullrich A (2003) Curr Opin Chem Biol 7:490–495

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1929) Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Foubister V (2002) DDT 7:934–935

    PubMed  Google Scholar 

  • Frankel SR (2003) Semin Oncol 30:300–3004

    Article  PubMed  CAS  Google Scholar 

  • Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R (2004) Int J Oncol 25:858–866

    Google Scholar 

  • Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Oncogene 25:4812–4830

    Article  PubMed  CAS  Google Scholar 

  • Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Cancer Res 62:3903–3913

    Google Scholar 

  • Goodsell DS (2004) The Oncologist 9:226–227

    Article  PubMed  Google Scholar 

  • Greville G (1969) Curr Top Bioenerg 3:1–78

    CAS  MathSciNet  Google Scholar 

  • Hosler JP, Ferguson-Miller S, Mills DA (2006) Annu Rev Biochem 75:165–187

    Article  PubMed  CAS  Google Scholar 

  • Issat T, Jakobisiak M, Golab J (2006) Oncol Rep 16: 1273–1276

    PubMed  CAS  Google Scholar 

  • Jiang X, Wang X (2004) Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Johnson JH, Belt JA, Dubinsky WP, Zimniak A, Racker E(1980) Biochemistry 19:3836–3840

    Google Scholar 

  • Johnson LV, Johnson ML, Chen LB (1980) Proc Natl Acad Sci (USA) 77:990–994

    Article  ADS  CAS  Google Scholar 

  • Kerkela R, Grazette L, Yacobi R, Iliescu C, Pattern R, Beahm C, Walters G, Shevtsov S, Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, A Van Hatten R, Alroy J, Durand J-B, Force T (2006) Nat Med 12:908–916

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Ko JK, Leung WC, Ho WK, Chiu P (2006) Eur J Pharmacol [Epub ahead of print]

  • Ko YH, Pedersen PL, Geschwind (2001) Cancer Lett 173:83–91

    Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Biochem Biophys Res Commun 324:269–275

    Article  PubMed  CAS  Google Scholar 

  • Koya K, Li Y, Wang H, Ukai T, Tatsukta N, Kawakami M, Shishido, Chen LB (1996) Cancer Res 56:538–543

  • LeBras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E, Lecellier G, Rebouilat D, Lemaire C, Kroemer G, Jacotot E, Brenner C (2006) Cancer Res 66:9143–9152

    Google Scholar 

  • Li YC, Fung KP, Kwok TT, Lee CY, Suen YK, Kong SK (2002) Life Sci 71:2729–2740

    Article  PubMed  CAS  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ (2006) Hepatology 43:S31–S44

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science 298:1912–1934

    Article  PubMed  ADS  CAS  Google Scholar 

  • Marcinkowska A, Malarska A, Saczko J, Chwilkowska A, Wysocka T, Drag-Zalesinska M, Wysocka T, Banas T (2001) Folia Histochem Cytobiol 39(Suppl 2):177–178

    PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Oncogene 25:4777–4786

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Parajuli P, Sloan AE (2004) Neurosurgery 55:1410–1419

    Article  PubMed  Google Scholar 

  • McGuire JJ (2003) Curr Pharm Design 9:2593–2613

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Nature 191:144–148

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nakashima RA, Paggi MG, Pedersen PL (1984) Cancer Res 44:5702–5706

    PubMed  CAS  Google Scholar 

  • Nakashima RA, Managan PS, Colombini M, Pedersen PL (1986) Biochemistry 25:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Neuzil J, Wang X-F, Dong L-F, Low P, Ralph SJ (2006) FEBS Lett 580:5125–5129

    Article  PubMed  CAS  Google Scholar 

  • Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M, Isogai E, Kageyama H, Imaizumi M, Nakagawara A (2006) Oncogene 25:5046–5055

    Article  PubMed  CAS  Google Scholar 

  • Oh KW, Qian T, Brenner DA, Lemaster JJ (2003) Toxicol Sci 73:44–52

    Article  PubMed  CAS  Google Scholar 

  • Palozza P, Serini S, Torsello A, Dinicuolo F, Maggiano N, Ranelletti FO, Wolf FI, Calviello G (2003) Nutr Cancer 47:76–87

    Article  PubMed  CAS  Google Scholar 

  • Panichakul T, Intachote P, Wongkajorsilp A, Sripa B, Sirisinha S (2006) Anticancer Res 26(1A):259–265

    PubMed  CAS  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB (2002) J Biol Chem 277:7610–7618

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (1978) Prog Exp Tumor Res 22:190–274

    PubMed  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu R-H, Huang P (2006) Oncogene 25:4633–4646

    Article  PubMed  CAS  Google Scholar 

  • Perchellet EM, Wang Y, Weber RL, Lou K, Hua DH, Perchellet JP (2004) Anticancer Drugs 15:929–946

    Article  PubMed  CAS  Google Scholar 

  • Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, A Van Hatten R, Alroy J, Durand J-B, Force T (2006) Nat Med 12:908–916

    Article  PubMed  CAS  Google Scholar 

  • Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogus G, Ponzoni M, Rozzo C (2007) Mol Cancer 6:8

  • Qin J, Xie LP, Zheng XY, Wang YB, Bai Y, Shen HF, Li LC, Dahiya R (2007) Biochem Biophys Res Commun 354:852–857

    Article  PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW (1958) J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  • Richards GM, Mehta MP (2007) Expert Opin Pharmacother 8:351–359

    Article  PubMed  CAS  Google Scholar 

  • Roccaro AM, Hideshima T, Richardson PG, Russo D, Ribatti D, Vacca A, Dammacco F, Anderson KC (2006) Curr Pharm Biotechnol 7:441–448

    Article  PubMed  CAS  Google Scholar 

  • Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K, Zdzisinka B, Kandefer-Szerszen M (2006) Naunyn Schmiedebergs Arch Pharmol 374:11–20

    Article  CAS  Google Scholar 

  • Sancho P, Galeano E, Nieto E, Delgado MD, Garcia-Perez AI (2007) Leukema Research (On Line)

  • Schreiber JR, Balcavage WX, Morris HP, Pedersen PL (1970) Cancer Res 30:2497–2501

    PubMed  CAS  Google Scholar 

  • Shen PF (2004) Front Biosci 9:2663–2670

    Article  PubMed  CAS  Google Scholar 

  • Shields AF (2006) Mol Imaging Biol 8:141–150

    Article  PubMed  Google Scholar 

  • Spencer TL, Lehninger AL (1976) Biochem J 154:405–414

    PubMed  CAS  Google Scholar 

  • Strebhardt K, Ullrich A (2006) N Eng J Med 355:2481–2482

    Article  CAS  Google Scholar 

  • Sun X, Wong JR, Song K, Hu J, Garlid KD, Chen LB (1994) Cancer Res 54:1465–1471

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) J Biol Chem 232:1077–1092

    PubMed  CAS  Google Scholar 

  • Tang L, Jin T, Zeng X, Wang JS (2005) J Nutr 135:287–290

    PubMed  CAS  Google Scholar 

  • Wang Y, Perchellet EM, Ward MM, Lou K, Zhao H, Battina SK, Wiredu B, Hua DH, Perchellet JP (2006b) Int J Oncol 28:161–172

    MATH  Google Scholar 

  • Wang XS, Yang W, Tao SJ, Li K, Li M, Dong JH, Wang MH (2006a) Yakuqaku Zasshi 126:979–990

    Article  CAS  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Constable, London

    Google Scholar 

  • Weber G (1968) Naturwissenschaften 55:418–429

    Article  PubMed  CAS  Google Scholar 

  • Weber G (2001) Biochem (Mosc) 66(10):1164–1173

    Article  CAS  Google Scholar 

  • Weber G, Lea MA (1966) Adv Enzyme Regul 4:115–145

    Article  PubMed  CAS  Google Scholar 

  • Weinhouse S (1972) Cancer Res 32:2007–2016

    PubMed  CAS  Google Scholar 

  • Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr, Chen LB (1987) Proc Natl Acad Sci 84:5444–5448

    Article  PubMed  ADS  CAS  Google Scholar 

  • Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr (1988) Annu Rev Cell Biol 4:155–181

    Google Scholar 

  • Xu RH, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P (2005) Leukemia 19:2153–2158

    Article  PubMed  CAS  Google Scholar 

  • Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, Schwartz L, Icard P (2006) Anticancer Res 26: 3561–3566

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205-2185, USA

    Peter L. Pedersen

Authors
  1. Peter L. Pedersen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Peter L. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.L. The cancer cell’s “power plants” as promising therapeutic targets: An overview. J Bioenerg Biomembr 39, 1–12 (2007). https://doi.org/10.1007/s10863-007-9070-5

Download citation

  • Published: 03 April 2007

  • Issue Date: February 2007

  • DOI: https://doi.org/10.1007/s10863-007-9070-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Bioenergetics
  • Warburg
  • Warburg effect
  • Cancer
  • Anti-cancer agents
  • Cancer therapy
  • 3-bromopyruvate
  • 3-BrPA
  • Cell death
  • Necrosis
  • Apoptosis
  • Energy metabolism
  • Power plants
  • Glycolysis
  • Mitochondria
  • Cytochrome c
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature