Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 405–410 | Cite as

Rotation, Structure, and Classification of Prokaryotic V-ATPase

  • Ken Yokoyama
  • Hiromi Imamura
Article

 

The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V0 domain in order to accommodate the V1 central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V1 and the V0 domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase).

Key Words

V-ATPase ATP synthase single-molecule X-ray crystallography Thermus thermophilus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arata, Y., Baleja, J. D., and Forgac, M. (2002). Biochemistry 41, 11301–11307.CrossRefGoogle Scholar
  2. Aviezer-Hagai, K., Padler-Karavani, V., and Nelson, N. (2003). J. Exp. Biol. 206, 3227–3237.CrossRefGoogle Scholar
  3. Bernal, R. A., and Stock, D. (2004). Structure 12, 1789–1798.CrossRefGoogle Scholar
  4. Boyer, P. D., and Kohlbrenner, W. E. (1981). In Energy Coupling in Photosynthesis (Selman, B. R., and Selman-Reimer, S., eds.), Elsevier-North Holland, New York, pp. 231–240.Google Scholar
  5. Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002). EMBO Rep. 3, 982–987.CrossRefGoogle Scholar
  6. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000). Nat. Struct. Biol. 7, 1055–1061.CrossRefGoogle Scholar
  7. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., Manolson, M. F., Poole, R. J., Date, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M. (1989). Proc. Natl. Acad. Sci. U.S.A. 86, 6661–6665.Google Scholar
  8. Graham, L. A., Flannery, A. R., and Stevens, T. H. (2003). Structure and assembly of the yeast V-ATPase. J. Bioenerg. Biomembr. 35, 301–312.CrossRefGoogle Scholar
  9. Grüber, G., Godovac-Zimmermann, J., Link, T. A., Coskun, U., Rizzo, V. F., Betz, C., and Bailer, S. M. (2002). Biochem. Biophys. Res. Commun. 298, 383–391.CrossRefGoogle Scholar
  10. Grüber, G., Wieczorek, H., Harvey, W. R., and Müller, V. (2001). J. Exp. Biol. 204, 2597–2605.Google Scholar
  11. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y., and Futai, M. (2003). J. Biol. Chem. 278, 23714–23719.CrossRefGoogle Scholar
  12. Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000). J. Biol. Chem. 275, 386–389.CrossRefGoogle Scholar
  13. Imamura, H., Ikeda, C., Yoshida, M., and Yokoyama, K. (2004). J. Biol. Chem. 279, 18085–18090.CrossRefGoogle Scholar
  14. Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 2312–2315.Google Scholar
  15. Iwata, M., Imamura, H., Stambouli, E., Ikeda, C., Tamakoshi, M., Nagata, K., Makyio, H., Hankamer, B., Barber, J., Yoshida, M., Yokoyama, K., and Iwata, S. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 59–64.Google Scholar
  16. Kane, P. M., and Smardon, A. M. (2003). J. Bioenerg. Biomembr. 35, 313–321.CrossRefGoogle Scholar
  17. Kato, Y., Matsui, T., Tanaka, N., Muneyuki, E., Hisabori, T., and Yoshida, M. (1997). J. Biol. Chem. 272, 24906–24912.CrossRefGoogle Scholar
  18. Lolkema, J. S., Chaban, Y., and Boekema, E. J. (2003). J. Bioenerg. Biomembr. 35, 323–335.CrossRefGoogle Scholar
  19. Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y. (1997). J. Biol. Chem. 272, 24885–24890.CrossRefGoogle Scholar
  20. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005). Science 308, 654–659.CrossRefGoogle Scholar
  21. Nelson, N., Nelson, H., and Racker, E. (1972). J. Biol. Chem. 247, 7657–7662.Google Scholar
  22. Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell. Biol. 3, 94–103.CrossRefGoogle Scholar
  23. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299–302.CrossRefGoogle Scholar
  24. Parra, K. J., Keenan, K. L., and Kane, P. M. (2000). J. Biol. Chem. 275, 21761–21767.CrossRefGoogle Scholar
  25. Rizzo, V. F., Coskun, U., Radermacher, M., Ruiz, T., Armbruster, A., and Gruber, G. (2003). J. Biol. Chem. 278, 270–275.CrossRefGoogle Scholar
  26. Rubinstein, J. L., Walker, J. E., and Henderson, R. (2003). EMBO J., 22, 6182–6192.CrossRefGoogle Scholar
  27. Shimabukuro, K., Yasuda, R., Muneyuki, E., Hara, K. Y., Kinosita, K., Jr., and Yoshida, M. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 14731–14736.Google Scholar
  28. Smith, J. B., and Sternweis, P. C. (1977). Biochemistry 16, 306–311.CrossRefGoogle Scholar
  29. Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997). J. Biol. Chem. 272, 26787–26793.CrossRefGoogle Scholar
  30. Tsunoda, S. P., Aggeler, R., Yoshida, M., and Capaldi, R. A. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 898–902.Google Scholar
  31. Wilkens, S., Inoue, T., and Forgac, M. (2004). J. Biol. Chem. 279, 41942–41949.CrossRefGoogle Scholar
  32. Xu, T., Vasilyeva, E., and Forgac, M. (1999). J. Biol. Chem. 274, 28909–28915.CrossRefGoogle Scholar
  33. Yasuda, R., Noji, H., Kinosita, K., Jr., and Yoshida, M. (1998). Cell 93, 1117–1124.CrossRefGoogle Scholar
  34. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr., and Itoh, H. (2001). Nature 410, 898–904.CrossRefGoogle Scholar
  35. Yokoyama, K., Akabane, Y., Ishii, N., and Yoshida, M. (1994). J. Biol. Chem. 269, 12248–12253.Google Scholar
  36. Yokoyama, K., Nagata, K., Imamura, H., Ohkuma, S., Yoshida, M., and Tamakoshi, M. (2003a). J. Biol. Chem. 278, 42686–42691.CrossRefGoogle Scholar
  37. Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003b). J. Biol. Chem. 278, 24255–24258.CrossRefGoogle Scholar
  38. Yokoyama, K., Ohkuma, S., Taguchi, H., Yasunaga, T., Wakabayashi, T., and Yoshida, M. (2000). J. Biol. Chem. 275, 13955–13961.CrossRefGoogle Scholar
  39. Yokoyama, K., Oshima, T., and Yoshida, M. (1990). J. Biol. Chem. 265, 21946–21950.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.ATP System Project, Exploratory Research for Advanced TechnologyJapan Science and Technology Agency, Nagatsuta, Midori-kuYokohamaJapan
  2. 2.ATP System Project, Exploratory Research for Advanced TechnologyJapan Science and Technology AgencyMidori-kuJapan

Personalised recommendations