Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 369–374 | Cite as

Regulation of Plant Plasma Membrane H+- and Ca2+-ATPases by Terminal Domains

  • Lone Bækgaard
  • Anja T. Fuglsang
  • Michael G. Palmgren
Article

 

In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H+-and Ca2+-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory mechanisms of these pumps. In plant plasma membrane H+- and Ca2+-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed.

Key Words

Plasma membrane H+-ATPase plasma membrane Ca2+-ATPase AHA2 ACA8 plant Arabidopsis autoinhibitory domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamo, H. P., and Grimaldi, M. E. (1998). Biochem. J. 331, 763–766.Google Scholar
  2. Axelsen, K. B., and Palmgren, M. G. (1998). J. Mol. Evol. 46, 84– 101.CrossRefGoogle Scholar
  3. Axelsen, K. B., and Palmgren, M. G. (2001). Plant Physiol. 126, 696–706.CrossRefGoogle Scholar
  4. Axelsen, K. B., Venema, K., Jahn, T., Baunsgaard, L., and Palmgren, M. G. (1999). Biochemistry 38, 7227–7234.CrossRefGoogle Scholar
  5. Bgaard, L., Luoni, L., De Michelis, M. I., and Palmgren, M. G. (2006). J. Biol. Chem. (in press)Google Scholar
  6. Baunsgaard, L., Venema, K., Axelsen, K. B., Villalba, J. M., Welling, A., Wollenweber, B., and Palmgren, M. G. (1996). Plant J. 10, 451–458.CrossRefGoogle Scholar
  7. Bonza, M. C., Luoni, L., and de Michelis, M. I. (2001). Physiol. Plant. 112, 315–320.CrossRefGoogle Scholar
  8. Bonza, M. C., Luoni, L., and de Michelis, M. I. (2004). Planta 218, 814–823.CrossRefGoogle Scholar
  9. Bonza, M. C., Morandini, P., Luoni, L., Geisler, M., Palmgren, M. G., and de Michelis, M. I. (2000). Plant Physiol. 123, 1495– 1505.CrossRefGoogle Scholar
  10. Camoni, L., Iori, V., Marra, M., and Aducci, P. (2000). J. Biol. Chem. 275, 9919–9923.CrossRefGoogle Scholar
  11. Chen, Z., Stokes, D. L., and Jones, L. R. (2005). J. Biol. Chem. 280, 10530–10539.CrossRefGoogle Scholar
  12. Chen, Z., Stokes, D. L., Rice, W. J., and Jones, L. R. (2003). J. Biol. Chem. 278, 48348–48356.CrossRefGoogle Scholar
  13. Chiesi, M., Vorherr, T., Falchetto, R., Waelchli, C., and Carafoli, E. (1991). Biochemistry 30, 7978–7983.CrossRefGoogle Scholar
  14. Chung, W. S., Lee, S. H., Kim, J. C., Heo, W. D., Kim, M. C., Park, C. Y., Park, H. C., Lim, C. O., Kim, W. B., Harper, J. F., and Cho, M. J. (2000). Plant Cell 12, 1393–1407.CrossRefGoogle Scholar
  15. Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P., and Andersen, J. P. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 2776–2781.CrossRefGoogle Scholar
  16. Crivici, A., and Ikura, M. (1995). Annu. Rev. Biophys. Biomol. Struct. 24, 85–116.CrossRefGoogle Scholar
  17. Cunningham, K. W., and Fink, G. R. (1994). J. Cell Biol. 124, 351–363.CrossRefGoogle Scholar
  18. Curran, A. C., Hwang, I., Corbin, J., Martinez, S., Rayle, D., Sze, H., and Harper, J. F. (2000). J. Biol. Chem. 275, 30301–30308.CrossRefGoogle Scholar
  19. Fuglsang, A. T., Borch, J., Bych, K., Jahn, T. P., Roepstorff, P., and Palmgren, M. G. (2003). J. Biol. Chem. 278, 42266–42272.CrossRefGoogle Scholar
  20. Fuglsang, A. T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O. N., Aducci, P., and Palmgren, M. G. (1999). J. Biol. Chem. 274, 36774–36780.CrossRefGoogle Scholar
  21. Füzesi, M., Gottschalk, K.-E., Lindzen, M., Shainskaya, A., Küster, B., Garty, H., and Karlish, S. J. D. (2005). J. Biol. Chem. 280, 18291–18301.CrossRefGoogle Scholar
  22. Geisler, M., Axelsen, K. B., Harper, J. F., and Palmgren, M. G. (2000a). Biochim. Biophys. Acta 1465, 52–78.Google Scholar
  23. Geisler, M., Frangne, N., Gomès, E., Martinoia, E., and Palmgren, M. G. (2000b). Plant Physiol. 124, 1814–1827.CrossRefGoogle Scholar
  24. Harper, J. F., Hong, B., Hwang, I., Guo, H. Q., Stoddard, R., Huang, J. F., Palmgren, M. G., and Sze, H. (1998). J. Biol. Chem. 273, 1099–1106.CrossRefGoogle Scholar
  25. Hong, B., Ichida, A., Wang, Y., Gens, S., Pickard, B. G., and Harper, J. F. (1999). Plant Physiol. 119, 1165–1175.CrossRefGoogle Scholar
  26. Huang, L., Berkelman, T., Franklin, A. E., and Hoffman, N. E. (1993). Proc. Natl. Acad. Sci. U.S.A. 90, 10066–10070.Google Scholar
  27. Hwang, I., Harper, J. F., Liang, F., and Sze, H. (2000b). Plant Physiol. 122, 157–167.CrossRefGoogle Scholar
  28. Hwang, I., Sze, H., and Harper, J. F. (2000a). Proc. Natl. Acad. Sci. U.S.A. 97, 6224–6229.CrossRefGoogle Scholar
  29. Jelich-Ottmann, C., Weiler, E. W., and Oecking, C. (2001). J. Biol. Chem. 276, 39852–39857.CrossRefGoogle Scholar
  30. Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). Nature 414, 656–660.CrossRefGoogle Scholar
  31. Kinoshita, T., and Shimazaki, K. (1999). EMBO J. 18, 5548–5558.CrossRefGoogle Scholar
  32. Li, C., Grosdidier, A., Crambert, G., Horisberger, J.-D., Michielin, O., and Geering, K. (2004). J. Biol. Chem. 279, 38895–38902.CrossRefGoogle Scholar
  33. Luoni, L., Meneghelli, S., Bonza, M. C., and de Michelis, M. I. (2004). FEBS Lett. 574, 20–24.Google Scholar
  34. Malmstrüm, S., Askerlund, P., and Palmgren, M. G. (1997). FEBS Lett. 400, 324–328.CrossRefGoogle Scholar
  35. Maudoux, O., Batoko, H., Oecking, C., Gevaert, K., Vandekerckhove, J., Boutry, M., and Morsomme, P. (2000). J. Biol. Chem. 275, 17762–17770.CrossRefGoogle Scholar
  36. Morsomme, P., Dambly, S., Maudoux, O., and Boutry, M. (1998). J. Biol. Chem. 273, 34837–34842.CrossRefGoogle Scholar
  37. Morsomme, P., de Kerchove d'Exaerde, A., de Meester, S., Thines, D., Goffeau, A., and Boutry, M. (1996). EMBO J. 15, 5513–5526.Google Scholar
  38. Palmgren, M. G., Larsson, C., and Sommarin, M. (1990). J. Biol. Chem. 265, 13423–13426.Google Scholar
  39. Palmgren, M. G., Sommarin, M., Serrano, R., and Larsson, C. (1991). J. Biol. Chem. 267, 20470–20475.Google Scholar
  40. Schio tt, M., and Palmgren, M. G. (2005). Physiol. Plant. 124, 278– 283.CrossRefGoogle Scholar
  41. Schio tt, M., Romanowsky, S. M., Bae kgaard, L., Jakobsen, M. K., Palmgren, M. G., and Harper, J. F. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 9502–9507.CrossRefGoogle Scholar
  42. Shen, H., He, L. F., Sasaki, T., Yamamoto, Y., Zheng, S. J., Ligaba, A., Yan, X. L., Ahn, S. J., Yamaguchi, M., Hideo, S., and Matsumoto, H. (2005). Plant Physiol. 138, 287–296.CrossRefGoogle Scholar
  43. Simmerman, H. K. B., and Jones, L. R. (1998). Physiol. Rev. 78, 921–947.Google Scholar
  44. Svennelid, F., Olsson, A., Piotrowski, M., Rosenquist, M., Ottman, C., Larsson, C., Oecking, C., and Sommarin, M. (1999). Plant Cell 11, 2379–2391.CrossRefGoogle Scholar
  45. Sweadner, K. J., and Rael, E. (2000). Genomics 68, 41–56.CrossRefGoogle Scholar
  46. Toyoshima, C., Asahi, M., Sugita, Y., Khanna, R., Tsuda, T., and MacLennan, D. H. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 467–472.CrossRefGoogle Scholar
  47. Toyoshima, C., and Nomura, H. (2002). Nature 418, 605–611.CrossRefGoogle Scholar
  48. Vetter, S. W., and Leclerc, E. (2003). Eur. J. Biochem. 270, 404–414.CrossRefGoogle Scholar
  49. Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T., and Ikura, M. (2000). J. Struct. Funct. Genomics 1, 8–14.CrossRefGoogle Scholar
  50. Zhang, X., Wang, H. B., Takemiya, A., Song, C. P., Kinoshita, T., and Shimazaki, K. (2004). Plant Cell Physiol. 136, 4150–4158.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Lone Bækgaard
    • 1
  • Anja T. Fuglsang
    • 1
  • Michael G. Palmgren
    • 1
  1. 1.Department of Plant BiologyThe Royal Veterinary and Agricultural UniversityFrederiksberg CDenmark

Personalised recommendations