The Factor Structure of Gambling-Related Cognitions in an Undergraduate University Sample

  • Richard E. Mattson
  • James MacKillop
  • Bryan A. Castelda
  • Emily J. Anderson
  • Peter J. Donovick


Gambling is relatively common among university students, but few studies examine factors that contribute to gambling behavior in this cohort. Based on evidence that cognitive distortions may play a role in gambling behavior, this study examined the factor structure of gambling-related cognitive distortions using the Gambler’s Beliefs Questionnaire (GBQ; Steenbergh et al., Psychology of Addictive Behaviors, 16:143–149, 2002) in a sample of 393 college undergraduates. Confirmatory factor analysis was used to test a previously reported two-factor model, comprising dimensions of Illusion of Control (IOC) and Luck/Perseverance (L/P). An oblique, but not orthogonal, two-factor model was confirmed but did not provide an incrementally better fit to the data than a one-factor model. However, multiple regression analyses showed that the L/P scale accounted for significant variance in the criterion when controlling for IOC items. This suggests that IOC items provide redundant information and that gambling-related cognitive distortions in this sample can be adequately assessed using solely the L/P factor.


Gambling Cognitive distortions University students Factor analysis 



We thank Peter M. Bentler, Fred B. Bryant, and Bryan D. Edwards for their input on the statistical analyses presented in this paper.


  1. Aikake, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.CrossRefGoogle Scholar
  2. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411–423.CrossRefGoogle Scholar
  3. American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
  4. Bentler, P. M., & Mooijaart, A. (1989). Choice of structural model via parsimony: A rationale based on precision. Psychological Bulletin, 106, 315–317.PubMedCrossRefGoogle Scholar
  5. Bergevin, T., Gupta, R., Derevensky, J., & Kaufman, F. (2006). Adolescent Gambling: Understanding the role of stress and coping. Journal of Gambling Studies, 22, 195–208.CrossRefGoogle Scholar
  6. Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17, 303–316.CrossRefGoogle Scholar
  7. Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural models. Newbury Park: Sage.Google Scholar
  8. Bryant, F. B., Yarnold, P. R., & Grimm, L. G. (1996). Toward a measurement model of the affect intensity measure: A three-factor structure. Journal of Research in Personality, 30, 223–247.CrossRefGoogle Scholar
  9. Ferris, J., Wynne, H., & Single, E. (1999). Measuring problem gambling in Canada: Final report—Phase I, April 22, 1999. Ottowa: Canadian Centre on Substance Abuse.Google Scholar
  10. James, L. R., Mulaik, S. A., & Brett, J. M. (1982). Causal analysis: Assumptions, models, and data. Beverly Hills, CA: Sage.Google Scholar
  11. LaBrie, R. A., Shafer, H. J., LaPlante, D. A., & Wechsler, H. (2003). Correlates of college student gambling in the United States. Journal of American College Health, 52, 53–62.PubMedCrossRefGoogle Scholar
  12. Ladouceur, R., & Walker, M. (1996). A cognitive perspective of gambling. In P. M. Salkoskvis (Ed.), Trends in cognitive and behavioral therapies (pp.89–120). New York: Wiley.Google Scholar
  13. Langer, E. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311–328.CrossRefGoogle Scholar
  14. Lesieur H. R., & Blume, S. B. (1987). The south oaks gambling screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144(9), 1184–1188.PubMedGoogle Scholar
  15. MacKillop, J., Anderson, E. J., Castelda, B. A., Mattson, R. E., & Donovick, P. J. (2006a). Divergent validity of measures of cognitive distortions, impulsivity, and time perspective in pathological gambling. Journal of Gambling Studies, 22, 339–354.PubMedCrossRefGoogle Scholar
  16. MacKillop, J., Anderson, E. J., Castelda, B. A., Mattson, R. E., & Donovick, P. J. (2006b). Convergent validity of measures of cognitive distortions, impulsivity, and time perspective with pathological gambling. Psychology of Addictive Behaviors, 20, 75–79.PubMedCrossRefGoogle Scholar
  17. Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. Precedings of the American Statistical Association, 308–313.Google Scholar
  18. Steenbergh, T. A., Meyers, A. W., May, R. K., & Whelan, J. P. (2002). Development and validation of the Gamblers’ Beliefs Questionnaire. Psychology of Addictive Behaviors, 16, 143–149.PubMedCrossRefGoogle Scholar
  19. Stinchfield, R., Hanson, W. E., & Olson, D. H. (2006). Problem and pathological gambling among college students. New Directions for Student Services, 113, 63–72.CrossRefGoogle Scholar
  20. Tabachnik, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Needham Heights, MA: Allyn and Bacon.Google Scholar
  21. Toneatto, T. (1999). Cognitive psychopathology of problem gambling. Substance Use & Misuse, 34, 1593–1604.CrossRefGoogle Scholar
  22. Yuan, K. -H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Richard E. Mattson
    • 1
  • James MacKillop
    • 2
  • Bryan A. Castelda
    • 3
  • Emily J. Anderson
    • 4
  • Peter J. Donovick
    • 5
  1. 1.Department of PsychologyAuburn UniversityAuburnUSA
  2. 2.Center for Alcohol and Addiction StudiesBrown UniversityProvidenceUSA
  3. 3.Pacific Island DivisionNational Center for Posttraumatic Stress DisorderHonoluluUSA
  4. 4.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  5. 5.State University of New York at BinghamtonVestalUSA

Personalised recommendations